Trajectory tracking control of a quadrotor UAV based on sliding mode active disturbance rejection control

被引:45
作者
Zhang, Yong [1 ]
Chen, Zengqiang [1 ]
Sun, Mingwei [1 ]
Zhang, Xinghui [2 ]
机构
[1] Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R China
[2] Tianjin Sino German Univ Appl Sci, Tianjin 300350, Peoples R China
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2019年 / 24卷 / 04期
基金
中国国家自然科学基金;
关键词
sliding mode control; active disturbance rejection control (ADRC); extended state observer (ESO); quadrotor UAV; trajectory tracking control;
D O I
10.15388/NA.2019.4.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a sliding mode active disturbance rejection control scheme to deal with trajectory tracking control problems for the quadrotor unmanned aerial vehicle (UAV). Firstly, the differential signal of the reference trajectory can be obtained directly by using the tracking differentiator (TD), then the design processes of the controller can be simplified. Secondly, the estimated values of the UAV's velocities, angular velocities, total disturbance can be acquired by using extended state observer (ESO), and the total disturbance of the system can be compensated in the controller in real time, then the robustness and anti-interference capability of the system can be improved. Finally, the sliding mode controller based on TD and ESO is designed, the stability of the closed-loop system is proved by Lyapunov method. Simulation results show that the control scheme proposed in this paper can make the quadrotor track the desired trajectory quickly and accurately.
引用
收藏
页码:545 / 560
页数:16
相关论文
共 31 条
[1]   ON TRAJECTORY TRACKING MODEL PREDICTIVE CONTROL OF AN UNMANNED QUADROTOR HELICOPTER SUBJECT TO AERODYNAMIC DISTURBANCES [J].
Alexis, K. ;
Nikolakopoulos, G. ;
Tzes, A. .
ASIAN JOURNAL OF CONTROL, 2014, 16 (01) :209-224
[2]   Model predictive quadrotor control: attitude, altitude and position experimental studies [J].
Alexis, K. ;
Nikolakopoulos, G. ;
Tzes, A. .
IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (12) :1812-1827
[3]   MIXING ADAPTIVE FAULT TOLERANT CONTROL OF QUADROTOR UAV [J].
Buyukkabasakal, Kemal ;
Fidan, Baris ;
Savran, Aydogan .
ASIAN JOURNAL OF CONTROL, 2017, 19 (04) :1441-1454
[4]   Robust Backstepping Sliding-Mode Control and Observer-Based Fault Estimation for a Quadrotor UAV [J].
Chen, Fuyang ;
Jiang, Rongqiang ;
Zhang, Kangkang ;
Jiang, Bin ;
Tao, Gang .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (08) :5044-5056
[5]   A Reconfiguration Scheme for Quadrotor Helicopter via Simple Adaptive Control and Quantum Logic [J].
Chen, Fuyang ;
Wu, Qingbo ;
Jiang, Bin ;
Tao, Gang .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (07) :4328-4335
[6]  
Dey P, 2016, 2016 INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND DYNAMIC OPTIMIZATION TECHNIQUES (ICACDOT), P268, DOI 10.1109/ICACDOT.2016.7877592
[7]   Output Feedback Control of a Quadrotor UAV Using Neural Networks [J].
Dierks, Travis ;
Jagannathan, Sarangapani .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (01) :50-66
[8]  
Fang Xu, 2016, Journal of Beijing University of Aeronautics and Astronautics, V42, P1777, DOI 10.13700/j.bh.1001-5965.2015.0498
[9]  
Fethalla N., 2017, P IEEE 30 CAN C EL C, P1
[10]   Modeling and prescribed H∞ tracking control for strict feedback nonlinear systems [J].
Gao, Chuang ;
Jia, Yufu ;
Liu, Xiaoping ;
Chen, Ming .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (03) :317-333