Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds

被引:287
作者
Burq, N [1 ]
Gérard, P [1 ]
Tzvetkov, N [1 ]
机构
[1] Univ Paris 11, F-91405 Orsay, France
关键词
D O I
10.1353/ajm.2004.0016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Strichartz estimates with fractional loss of derivatives for the Schrodinger equation on any Riemannian compact manifold. As a consequence we infer low regularity local well-posedness results in any dimension, as well as global existence results for the Cauchy problem of nonlinear Schrodinger equations on surfaces in the case of defocusing polynomial nonlinearities, and on three-manifolds in the case of cubic defocusing nonlinearities. We also discuss the optimality of these Strichartz estimates on spheres.
引用
收藏
页码:569 / 605
页数:37
相关论文
共 38 条
[1]  
[Anonymous], SPECTRAL THEORY DIFF
[2]  
[Anonymous], 1987, PROGR MATH
[3]   Quasilinear wave equations and Strichartz estimations [J].
Bahouri, H ;
Chemin, JY .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (06) :1337-1377
[4]  
BESSE A, 1978, MANIFOLDS ALL WHOSE
[5]  
Bourgain J., 1993, Geometric Functional Analysis GAFA, V3, P209
[6]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P157, DOI DOI 10.1007/BF01896021
[7]  
BOURGAIN J, 1999, C PUBLICATIONS AM MA, V46
[8]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[9]  
BURQ N, 1993, MEM SOC MATH FRANCE, V55
[10]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836