Development of a minimal chemically defined medium for Ketogulonicigenium vulgare WSH001 based on its genome-scale metabolic model

被引:19
作者
Fan, Shicun [1 ,2 ]
Zhang, Zhenyu [2 ]
Zou, Wei [1 ,2 ]
Huang, Zheng [1 ,2 ]
Liu, Jie [3 ]
Liu, Liming [1 ,2 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Minist Educ, Key Lab Ind Biotechnol, Wuxi 214122, Jiangsu, Peoples R China
[3] Jiangsu Jiangshan Pharmaceut Co Ltd, Jingjiang 214500, Jiangsu, Peoples R China
关键词
Ketogulonicigenium vulgare; 2-Keto-L-gulonic acid; Flux balance analysis; Chemically defined medium; Essential nutrient; BACILLUS-MEGATERIUM; KETOGULONIGENIUM-VULGARE; NUTRIENT-REQUIREMENTS; RECONSTRUCTION; GROWTH;
D O I
10.1016/j.jbiotec.2013.10.027
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Commercial production of 2-keto-L-gulonic acid (2-KLG), the immediate precursor of L-ascorbic acid, is by Ketogulonicigenium vulgare in co-culture with Bacillus megaterium. We used flux balance analysis (FBA) to study a genome-scale metabolic model (GSMM) of K. vulgare, iWZ663, and found that K. vulgare is deficient in nutrient biosynthetic pathways. Individually omitting L-glycine, L-cysteine, L-methionine, L-tryptophan, adenine, thymine, thiamine and pantothenate from complete chemically defined medium (CDM), caused biomass formation of K. vulgare to decrease to 1%, 21%, 16%, 1%, 26%, 57%, 73% and 24%, respectively. Based on these results and FBA, a minimal chemically defined medium (MCDM) was developed that supported monoculture of K. vulgare (0.28 OD600) and 2-KLG production (3.59 g/L), which were similar to those in complete CDM or corn steep liquor powder (CSLP) medium. This study demonstrated the potential of using GSMM and FBA to characterize nutrient requirements, optimize CDM, and study interactions in co-culture. (C) 2013 Published by Elsevier B.V.
引用
收藏
页码:15 / 22
页数:8
相关论文
共 30 条
  • [1] [Anonymous], PLOS ONE
  • [2] The use of microorganisms in L-ascorbic acid production
    Bremus, Christoph
    Herrmann, Ute
    Bringer-Meyer, Stephanie
    Sahm, Hermann
    [J]. JOURNAL OF BIOTECHNOLOGY, 2006, 124 (01) : 196 - 205
  • [3] Cabiscol E, 2000, J BIOL CHEM, V275, P27393
  • [4] Genetic engineering of Ketogulonigenium vulgare for enhanced production of 2-keto-L-gulonic acid
    Cai, Lei
    Yuan, Mei-Qing
    Li, Zheng-Jun
    Chen, Jin-Chun
    Chen, Guo-Qiang
    [J]. JOURNAL OF BIOTECHNOLOGY, 2012, 157 (02) : 320 - 325
  • [5] Metabolomic profiling elucidates community dynamics of the Ketogulonicigenium vulgare-Bacillus megaterium consortium
    Du, Jin
    Zhou, Jian
    Xue, Jia
    Song, Hao
    Yuan, Yingjin
    [J]. METABOLOMICS, 2012, 8 (05) : 960 - 973
  • [6] FOLATE-MEDIATED ONE-CARBON METABOLISM
    Fox, Jennifer T.
    Stover, Patrick J.
    [J]. FOLIC ACID AND FOLATES, 2008, 79 : 1 - 44
  • [7] Effect of different carbon sources on central metabolic fluxes and the recombinant production of a hydrolase from Thermobifida fusca in Bacillus megaterium
    Fuerch, Tobias
    Wittmann, Christoph
    Wang, Wei
    Franco-Lara, Ezequiel
    Jahn, Dieter
    Deckwer, Wolf-Dieter
    [J]. JOURNAL OF BIOTECHNOLOGY, 2007, 132 (04) : 385 - 394
  • [8] Biotechnological approaches for L-ascorbic acid production
    Hancock, RD
    Viola, R
    [J]. TRENDS IN BIOTECHNOLOGY, 2002, 20 (07) : 299 - 305
  • [9] Glutathione enhances 2-keto-L-gulonic acid production based on Ketogulonicigenium vulgare model iWZ663
    Huang, Zheng
    Zou, Wei
    Liu, Jie
    Liu, Liming
    [J]. JOURNAL OF BIOTECHNOLOGY, 2013, 164 (04) : 454 - 460
  • [10] KEGG for representation and analysis of molecular networks involving diseases and drugs
    Kanehisa, Minoru
    Goto, Susumu
    Furumichi, Miho
    Tanabe, Mao
    Hirakawa, Mika
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 : D355 - D360