Computation of invariants of Lie algebras by means of moving frames

被引:35
作者
Boyko, Vyacheslav
Patera, Jiri
Popovych, Roman
机构
[1] NAS Ukraine, Inst Math, UA-01601 Kiev 4, Ukraine
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[3] Univ Vienna, Fak Math, A-1090 Vienna, Austria
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 20期
关键词
D O I
10.1088/0305-4470/39/20/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new purely algebraic algorithm is presented for computation of invariants (generalized Casimir operators) of Lie algebras. It uses the Cartan method of moving frames and the knowledge of the group of inner automorphisms of each Lie algebra. The algorithm is applied, in particular, to computation of invariants of real low-dimensional Lie algebras. A number of examples are calculated to illustrate its effectiveness and to make a comparison with the same cases in the literature. Bases of invariants of the real six-dimensional solvable Lie algebras with four-dimensional nilradicals are newly calculated and listed in a table.
引用
收藏
页码:5749 / 5762
页数:14
相关论文
共 47 条
[1]   GENERAL SETTING FOR CASIMIR INVARIANTS [J].
ABELLANAS, L ;
MARTINEZALONSO, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (08) :1580-1584
[2]   Solvable Lie algebras with naturally graded nilradicals and their invariants [J].
Ancochea, JM ;
Campoamor-Stursberg, R ;
Vergnolle, LG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (06) :1339-1355
[3]   Product structures on four dimensional solvable Lie algebras [J].
Andrada, A. ;
Barberis, M. L. ;
Dotti, I. G. ;
Ovando, G. P. .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2005, 7 (01) :9-37
[4]  
[Anonymous], 1976, ELEMENTS THEORY REPR
[5]  
[Anonymous], THEORIE TRANSFORMATI
[6]   ON NUMBER OF CASIMIR OPERATORS ASSOCIATED WITH ANY LIE GROUP [J].
BELTRAMETTI, EG ;
BLASI, A .
PHYSICS LETTERS, 1966, 20 (01) :62-+
[7]  
Bianchi L., 1918, LEZIONI TEORIA GRUPP
[8]  
BOYKO V, UNPUB R REAL LOW DIM
[9]  
BOYKO V, 2006, UNPUB INVARIANTS LIE
[10]   A new matrix method for the Casimir operators of the Lie algebras wsp (N, R) and Isp (2N, R) [J].
Campoamor-Stursberg, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (19) :4187-4208