Buckling and stability analysis of a piezoelectric viscoelastic nanobeam subjected to van der Waals forces

被引:28
作者
Chen, Changping [1 ,2 ]
Li, Shoujian [2 ]
Dai, Liming [1 ,3 ]
Qian, ChangZhao [1 ]
机构
[1] Xiamen Univ Technol, Coll Civil Engn & Architecture, Xiamen, Fujian, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Hunan, Peoples R China
[3] Univ Regina, Sino Canada Res Ctr Noise & Vibrat Control, Regina, SK S4S 0A2, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Buckling; Nonlinear dynamic stability; Piezoelectric viscoelastic nanobeam; Van der Waals force; Post-buckling; Incremental harmonic balanced method; DYNAMIC INSTABILITY; RESONATORS; NANOTUBE; STRESS; SI;
D O I
10.1016/j.cnsns.2013.09.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A study on the buckling and dynamic stability of a piezoelectric viscoelastic nanobeam subjected to van der Waals forces is performed in this research. The static and dynamic governing equations of the nanobeam are established with Galerkin method and under Euler-Bernoulli hypothesis. The buckling, post-buckling and nonlinear dynamic stability character of the nanobeam is presented. The quasi-elastic method, Leibnitz's rule, Runge-Kutta method and the incremental harmonic balanced method are employed for obtaining the buckling voltage, post-buckling characteristics and the boundaries of the principal instability region of the dynamic system. Effects of the electrostatic load, van der Waals force, creep quantity, inner damping, geometric nonlinearity and other factors on the post-buckling and the principal region of instability are investigated. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1626 / 1637
页数:12
相关论文
共 28 条
[1]  
[Anonymous], 1992, INTERMOLECULAR SURFA
[2]   Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories [J].
Ansari, R. ;
Sahmani, S. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2011, 49 (11) :1244-1255
[3]   Nanotechnologies for biomolecular detection and medical diagnostics [J].
Cheng, MMC ;
Cuda, G ;
Bunimovich, YL ;
Gaspari, M ;
Heath, JR ;
Hill, HD ;
Mirkin, CA ;
Nijdam, AJ ;
Terracciano, R ;
Thundat, T ;
Ferrari, M .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2006, 10 (01) :11-19
[4]   Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals [J].
Cleland, AN ;
Roukes, ML .
APPLIED PHYSICS LETTERS, 1996, 69 (18) :2653-2655
[5]   Nonlinear and nonplanar dynamics of suspended nanotube and nanowire resonators [J].
Conley, William G. ;
Raman, Arvind ;
Krousgrill, Charles M. ;
Mohammadi, Saeed .
NANO LETTERS, 2008, 8 (06) :1590-1595
[6]   Static and dynamic analysis of carbon nanotube-based switches [J].
Dequesnes, M ;
Tang, Z ;
Aluru, NR .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2004, 126 (03) :230-237
[7]   Nanoelectromechanical systems [J].
Ekinci, KL ;
Roukes, ML .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (06)
[8]   Nanoindentation and nanoscratch characteristics of Si and GaAs [J].
Fang, TH ;
Chang, WJ ;
Lin, CM .
MICROELECTRONIC ENGINEERING, 2005, 77 (3-4) :389-398
[9]   Stress at the solid-liquid interface of self-assembled monolayers on gold investigated with a nanomechanical sensor [J].
Fritz, J ;
Baller, MK ;
Lang, HP ;
Strunz, T ;
Meyer, E ;
Güntherodt, HJ ;
Delamarche, E ;
Gerber, C ;
Gimzewski, JK .
LANGMUIR, 2000, 16 (25) :9694-9696
[10]   Analysis of the nonlinear dynamic stability for an electrically actuated viscoelastic microbeam [J].
Fu, Y. M. ;
Zhang, Jin ;
Bi, R. G. .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2009, 15 (05) :763-769