Lie superalgebras whose enveloping algebras satisfy a non-matrix polynomial identity

被引:5
作者
Bergen, Jeffrey [1 ]
Riley, David [2 ]
Usefi, Hamid [3 ]
机构
[1] Depaul Univ, Dept Math, Chicago, IL 60614 USA
[2] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Associative Algebra; Polynomial Identity; Semiprime Ring; Grassmann Algebra; Australian Mathematical Society;
D O I
10.1007/s11856-012-0158-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a Lie superalgebra with its enveloping algebra U(L) over a field F. A polynomial identity is called non-matrix if it is not satisfied by the algebra of 2x2 matrices over F. We characterize L when U(L) satisfies a non-matrix polynomial identity. We also characterize L when U(L) is Lie solvable, Lie nilpotent, or Lie super-nilpotent.
引用
收藏
页码:161 / 173
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 1987, Identical Relations in Lie Algebras
[2]  
Bahturin Yu., 1992, INFINITE DIMENSIONAL
[3]  
Bahturin Yu. A., 1985, MAT SBORNIK, V127, P384
[4]  
Jacobson N., 1989, BASIC ALGEBRA, VII
[5]  
Kemer A., 1981, Algebra and Logic, V19, P157
[6]  
LATYSHEV VN, 1963, SIB MAT ZH, V4
[7]   ON A PROBLEM OF KUROSCH,A. [J].
LEVITZKI, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (12) :1033-1035
[8]   Characterization of non-matrix varieties of associative algebras [J].
Mishchenko, S. P. ;
Petrogradsky, V. M. ;
Regev, A. .
ISRAEL JOURNAL OF MATHEMATICS, 2011, 182 (01) :337-348
[9]  
Neumann PM., 1970, J AUSTR MATH SOC, V11, P19, DOI DOI 10.1017/S1446788700005917
[10]   ENVELOPING-ALGEBRAS SATISFYING A POLYNOMIAL IDENTITY [J].
PASSMAN, DS .
JOURNAL OF ALGEBRA, 1990, 134 (02) :469-490