Projected density matrix embedding theory with applications to the two-dimensional Hubbard model

被引:23
作者
Wu, Xiaojie [1 ]
Cui, Zhi-Hao [2 ]
Tong, Yu [1 ]
Lindsey, Michael [1 ]
Chan, Garnet Kin-Lic [2 ]
Lin, Lin [1 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[3] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
RENORMALIZATION-GROUP; QUANTUM; ALGORITHM; LIMIT;
D O I
10.1063/1.5108818
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Density matrix embedding theory (DMET) is a quantum embedding theory for strongly correlated systems. From a computational perspective, one bottleneck in DMET is the optimization of the correlation potential to achieve self-consistency, especially for heterogeneous systems of large size. We propose a new method, called projected DMET (p-DMET), which achieves self-consistency without needing to optimize the correlation potential. We demonstrate the performance of p-DMET on the two-dimensional Hubbard model. Published under license by AIP Publishing.
引用
收藏
页数:11
相关论文
共 35 条
  • [1] Dynamical mean-field theory, density-matrix embedding theory, and rotationally invariant slave bosons: A unified perspective
    Ayral, Thomas
    Lee, Tsung-Han
    Kotliar, Gabriel
    [J]. PHYSICAL REVIEW B, 2017, 96 (23)
  • [2] Density matrix embedding from broken symmetry lattice mean fields
    Bulik, Ireneusz W.
    Scuseria, Gustavo E.
    Dukelsky, Jorge
    [J]. PHYSICAL REVIEW B, 2014, 89 (03)
  • [3] The Density Matrix Renormalization Group in Quantum Chemistry
    Chan, Garnet Kin-Lic
    Sharma, Sandeep
    [J]. ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 62, 2011, 62 : 465 - 481
  • [4] An algorithm for large scale density matrix renormalization group calculations
    Chan, GKL
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (07) : 3172 - 3178
  • [5] Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group
    Chan, GKL
    Head-Gordon, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (11) : 4462 - 4476
  • [6] Intermediate and spin-liquid phase of the half-filled honeycomb Hubbard model
    Chen, Qiaoni
    Booth, George H.
    Sharma, Sandeep
    Knizia, Gerald
    Chan, Garnet Kin-Lic
    [J]. PHYSICAL REVIEW B, 2014, 89 (16):
  • [7] Cluster density matrix embedding theory for quantum spin systems
    Fan, Zhuo
    Jie, Quan-lin
    [J]. PHYSICAL REVIEW B, 2015, 91 (19):
  • [8] NUMERICAL-SOLUTION OF THE D=INFINITY HUBBARD-MODEL - EVIDENCE FOR A MOTT TRANSITION
    GEORGES, A
    KRAUTH, W
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (08) : 1240 - 1243
  • [9] Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
    Georges, A
    Kotliar, G
    Krauth, W
    Rozenberg, MJ
    [J]. REVIEWS OF MODERN PHYSICS, 1996, 68 (01) : 13 - 125
  • [10] Block product density matrix embedding theory for strongly correlated spin systems
    Gunst, Klaas
    Wouters, Sebastian
    De Baerdemacker, Stijn
    Van Neck, Dimitri
    [J]. PHYSICAL REVIEW B, 2017, 95 (19)