Plant growth-promoting bacteria confer resistance in tomato plants to salt stress

被引:776
|
作者
Mayak, S
Tirosh, T
Glick, BR
机构
[1] Hebrew Univ Jerusalem, Fac Agr Food & Environm Qual Sci, Robert H Smith Inst Plant Sci & Genet Agr, Kennedy Leigh Ctr Hort Res, IL-76100 Rehovot, Israel
[2] Univ Waterloo, Dept Biol, Waterloo, ON N2L 3G1, Canada
关键词
ACC deaminase; Lycopersicon esculentum; plant growth-promoting bacteria; salt stress;
D O I
10.1016/j.plaphy.2004.05.009
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The object of the work is to evaluate whether rhizobacteria populating dry salty environments can increase resistance in tomato to salt stress. Seven strains of plant growth-promoting bacteria that have 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity were isolated from soil samples taken from the Arava region of southern Israel. Following growth of these seedlings in the presence of 43 mM NaCl for 7 weeks, the bacterium that promoted growth to the greatest extent was selected for further study. DNA analysis of the 16S RNA indicated that the selected bacterium was Achromobacter piechaudii. This bacterium significantly increased the fresh and dry weights of tomato seedlings grown in the presence of up to 172 mM NaCl salt. The bacterium reduced the production of ethylene by tomato seedlings, which was otherwise stimulated when seedlings were challenged with increasing salt concentrations, but did not reduce the content of sodium. However, it slightly increased the uptake of phosphorous and potassium, which may contribute in part to activation of processes involved in the alleviation of the effect of salt. In the presence of salt the bacterium increased the water use efficiency (WUE). This may suggest that the bacterium act to alleviate the salt suppression of photosynthesis. However, the detailed mechanism was not elucidated. The work described in this report is a first step in the development of productive agricultural systems in saline environments. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:565 / 572
页数:8
相关论文
共 50 条
  • [41] Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress
    Shuai Zhao
    Na Zhou
    Zheng-Yong Zhao
    Ke Zhang
    Guo-Hua Wu
    Chang-Yan Tian
    Current Microbiology, 2016, 73 : 574 - 581
  • [42] Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress
    Zhao, Shuai
    Zhou, Na
    Zhao, Zheng-Yong
    Zhang, Ke
    Wu, Guo-Hua
    Tian, Chang-Yan
    CURRENT MICROBIOLOGY, 2016, 73 (04) : 574 - 581
  • [43] Plant growth-promoting bacteria (PGPB) in horticulture
    Aparna B. Gunjal
    Bernard R. Glick
    Proceedings of the Indian National Science Academy, 2024, 90 : 1 - 11
  • [44] Plant growth-promoting bacteria (PGPB) in horticulture
    Gunjal, Aparna B.
    Glick, Bernard R.
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2024, 90 (01): : 1 - 11
  • [45] Plant Growth-Promoting Bacteria: Mechanisms and Applications
    Glick, Bernard R.
    SCIENTIFICA, 2012, 2012
  • [46] Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings
    Fangchun Liu
    Shangjun Xing
    Hailin Ma
    Zhenyu Du
    Bingyao Ma
    Applied Microbiology and Biotechnology, 2013, 97 : 9155 - 9164
  • [47] DETECTION AND ENUMERATION OF PLANT GROWTH-PROMOTING BACTERIA
    Kecskes, M. L.
    Michel, E.
    Lauby, B.
    Rakotondrainibe, M.
    Palagyi, A.
    Kennedy, I. R.
    BIOLOGICAL NITROGEN FIXATION: TOWARDS POVERTY ALLEVIATION THROUGH SUSTAINABLE AGRICULTURE, 2008, 42 : 69 - 70
  • [48] Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings
    Liu, Fangchun
    Xing, Shangjun
    Ma, Hailin
    Du, Zhenyu
    Ma, Bingyao
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (20) : 9155 - 9164
  • [49] Isolation and characterization of salt-stress-tolerant rhizosphere soil bacteria and their effects on plant growth-promoting properties
    Radhakrishnan, Naveena
    Krishnasamy, Chitra
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [50] Thermal and salt stress effects on the survival of plant growth-promoting bacteria Azospirillum brasilense in inoculants for maize cultivation
    da Cunha, Elisandra Triches
    Pedrolo, Ana Marina
    Arisi, Ana Carolina Maisonnave
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2024, 104 (09) : 5360 - 5367