EEG extended source imaging with structured sparsity and L1-norm residual

被引:0
作者
Xu, Furong [1 ]
Liu, Ke [1 ]
Yu, Zhuliang [2 ,3 ]
Deng, Xin [1 ]
Wang, Guoyin [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China
[2] South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Peoples R China
[3] Pazhou Lab, Guangzhou 510335, Peoples R China
基金
中国国家自然科学基金;
关键词
EEG source imaging; Outliers; Structured sparsity; ADMM; CORTICAL CURRENT-DENSITY; SOURCE RECONSTRUCTION; LOCALIZATION; PERFORMANCE; ALGORITHM; EFFICIENT; FIELD;
D O I
10.1007/s00521-020-05603-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is a long-standing challenge to reconstruct the locations and extents of cortical neural activities from electroencephalogram (EEG) recordings, especially when the EEG signals contain strong background activities and outlier artifacts. In this work, we propose a robust source imaging method called L1R-SSSI. To alleviate the effect of outliers in EEG, L1R-SSSI employs the L-1-loss to model the residual error. To obtain locally smooth and globally sparse estimations, L1R-SSSI adopts the structured sparsity constraint, which incorporates the L-1-norm regularization in both the variation and original source domain. The estimations of L1R-SSSI are efficiently obtained using the alternating direction method of multipliers (ADMM) algorithm. Results of simulated and experimental data analysis demonstrate that L1R-SSSI effectively suppresses the effect of the outlier artifacts in EEG. L1R-SSSI outperforms the traditional L-2-norm-based methods (e.g., wMNE, LORETA), and SISSY, which employs L-2-norm loss and structured sparsity, indicated by the larger AUC (average AUC > 0.80), smaller SD (average SD <50 mm), DLE (average DLE <10 mm) and RMSE (average RMSE <1.75) values under all the numerically simulated conditions. L1R-SSSI also provides better estimations of extended sources than the method with L-1-loss and L-p-norm regularization term (e.g., LAPPS).
引用
收藏
页码:8513 / 8524
页数:12
相关论文
共 50 条
[41]   Using the l1-norm for Image-based tomographic reconstruction [J].
Calvino, Jose J. ;
Fernandez, Elena ;
Lopez-Haro, Miguel ;
Munoz-Ocana, Juan M. ;
Rodriguez-Chia, Antonio M. .
EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
[42]   A Method of L1-Norm Principal Component Analysis for Functional Data [J].
Yu, Fengmin ;
Liu, Liming ;
Yu, Nanxiang ;
Ji, Lianghao ;
Qiu, Dong .
SYMMETRY-BASEL, 2020, 12 (01)
[43]   Learning robust principal components from L1-norm maximization [J].
Ding-cheng FENG 1 .
Frontiers of Information Technology & Electronic Engineering, 2012, (12) :901-908
[44]   L1-norm based nonlinear inversion of transient electromagnetic data [J].
Sun HuaiFeng ;
Zhang NuoYa ;
Liu ShangBin ;
Li DunRen ;
Chen ChengDong ;
Ye QiongYao ;
Xue YiGuo ;
Yang Yang .
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2019, 62 (12) :4860-4873
[45]   A novel SCCA approach via truncated l1-norm and truncated group lasso for brain imaging genetics [J].
Du, Lei ;
Liu, Kefei ;
Zhang, Tuo ;
Yao, Xiaohui ;
Yan, Jingwen ;
Risacher, Shannon L. ;
Han, Junwei ;
Guo, Lei ;
Saykin, Andrew J. ;
Shen, Li .
BIOINFORMATICS, 2018, 34 (02) :278-285
[46]   WRA-MTSI: A Robust Extended Source Imaging Algorithm Based on Multi-Trial EEG [J].
Liu, Ke ;
Wang, Zhen ;
Yu, Zhuliang ;
Xiao, Bin ;
Yu, Hong ;
Wu, Wei .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2023, 70 (10) :2809-2821
[47]   ROBUST CAPPED L1-NORM PROJECTION TWIN SUPPORT VECTOR MACHINE [J].
Yang, Linxi ;
Wang, Yan ;
LI, Guoquan .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (08) :5797-5815
[48]   L1-norm Principal-Component Analysis via Bit Flipping [J].
Markopoulos, Panos P. ;
Kundu, Sandipan ;
Chamadia, Shubham ;
Pados, Dimitris A. .
2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, :326-332
[49]   Robust Tensor Analysis with Non-Greedy l1-Norm Maximization [J].
Zhao, Limei ;
Jia, Weimin ;
Wang, Rong ;
Yu, Qiang .
RADIOENGINEERING, 2016, 25 (01) :200-207
[50]   L1-graph construction using structured sparsity [J].
Zhou, Guangyao ;
Lu, Zhiwu ;
Peng, Yuxin .
NEUROCOMPUTING, 2013, 120 :441-452