EEG extended source imaging with structured sparsity and L1-norm residual

被引:0
|
作者
Xu, Furong [1 ]
Liu, Ke [1 ]
Yu, Zhuliang [2 ,3 ]
Deng, Xin [1 ]
Wang, Guoyin [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China
[2] South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Peoples R China
[3] Pazhou Lab, Guangzhou 510335, Peoples R China
基金
中国国家自然科学基金;
关键词
EEG source imaging; Outliers; Structured sparsity; ADMM; CORTICAL CURRENT-DENSITY; SOURCE RECONSTRUCTION; LOCALIZATION; PERFORMANCE; ALGORITHM; EFFICIENT; FIELD;
D O I
10.1007/s00521-020-05603-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is a long-standing challenge to reconstruct the locations and extents of cortical neural activities from electroencephalogram (EEG) recordings, especially when the EEG signals contain strong background activities and outlier artifacts. In this work, we propose a robust source imaging method called L1R-SSSI. To alleviate the effect of outliers in EEG, L1R-SSSI employs the L-1-loss to model the residual error. To obtain locally smooth and globally sparse estimations, L1R-SSSI adopts the structured sparsity constraint, which incorporates the L-1-norm regularization in both the variation and original source domain. The estimations of L1R-SSSI are efficiently obtained using the alternating direction method of multipliers (ADMM) algorithm. Results of simulated and experimental data analysis demonstrate that L1R-SSSI effectively suppresses the effect of the outlier artifacts in EEG. L1R-SSSI outperforms the traditional L-2-norm-based methods (e.g., wMNE, LORETA), and SISSY, which employs L-2-norm loss and structured sparsity, indicated by the larger AUC (average AUC > 0.80), smaller SD (average SD <50 mm), DLE (average DLE <10 mm) and RMSE (average RMSE <1.75) values under all the numerically simulated conditions. L1R-SSSI also provides better estimations of extended sources than the method with L-1-loss and L-p-norm regularization term (e.g., LAPPS).
引用
收藏
页码:8513 / 8524
页数:12
相关论文
共 50 条
  • [1] Imaging EEG Extended Sources Based on Variation Sparsity with L1-norm Residual
    Xu, Furong
    Liu, Ke
    Deng, Xin
    Wang, Guoyin
    BRAIN INFORMATICS, 2019, 11976 : 95 - 104
  • [2] EEG Extended Source Imaging with Variation Sparsity and Lp-Norm Constraint
    Peng, Shu
    Qi, Feifei
    Yu, Hong
    Liu, Ke
    ARTIFICIAL INTELLIGENCE, CICAI 2023, PT II, 2024, 14474 : 500 - 511
  • [3] EEG extended source imaging with structured sparsity and L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-norm residual
    Furong Xu
    Ke Liu
    Zhuliang Yu
    Xin Deng
    Guoyin Wang
    Neural Computing and Applications, 2021, 33 (14) : 8513 - 8524
  • [4] L1-norm and L2-norm Neuroimaging Methods in Reconstructing Extended Cortical Sources from EEG
    Ding, Lei
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 1922 - 1925
  • [5] RFI Source Detection Based on Reweighted l1-Norm Minimization for Microwave Interferometric Radiometry
    Zhu, Dong
    Lu, Hailiang
    Cheng, Yayun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Sparse Blind Source Separation via l1-Norm Optimization
    Georgiou, Tryphon T.
    Tannenbaum, Allen
    PERSPECTIVES IN MATHEMATICAL SYSTEM THEORY, CONTROL, AND SIGNAL PROCESSING, 2010, 398 : 321 - +
  • [7] Imaging brain extended sources from EEG/MEG based on variation sparsity using automatic relevance determination
    Liu, Ke
    Yu, Zhu Liang
    Wu, Wei
    Gu, Zhenghui
    Li, Yuanqing
    NEUROCOMPUTING, 2020, 389 : 132 - 145
  • [8] Bayesian EEG source localization using a structured sparsity prior
    Costa, Facundo
    Batatia, Hadj
    Oberlin, Thomas
    D'Giano, Carlos
    Tourneret, Jean-Yves
    NEUROIMAGE, 2017, 144 : 142 - 152
  • [9] Regularized Capon Beamformer using l1-Norm Applied to Photoacoustic Imaging
    Paridar, Roya
    Mozaffarzadeh, Moein
    Basij, Maryam
    Mehrmohammadi, Mohammad
    Orooji, Mahdi
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [10] L1-norm based discriminative spatial pattern for single-trial EEG classification
    Tang, Qin
    Wang, Jing
    Wang, Haixian
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2014, 10 : 313 - 321