On (a, d)-Antimagic Labelings of Generalized Petersen Graphs P(n, 5)

被引:0
作者
Feng, Wei [1 ]
Hong, Xia [1 ]
Yang, Yuansheng [1 ,2 ]
Jirimutu [1 ]
机构
[1] Inner Mongolian Univ Nationalities, Coll Math, Tongliao 028043, Peoples R China
[2] Dalian Univ Technol, Dept Comp Sci, Dalian 116024, Peoples R China
关键词
(a; d)-antimagic labeling; Petersen graph; vertex labeling; edge labeling;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A connected graph G = (V, E) is said to be (a, d)- antimagic if there exist positive integers a, d and a bijection f : E -> {1, 2,..., vertical bar E vertical bar} such that the induced mapping g(f) : V -> N, defined by gf (v) = Sigma f(uv), uv is an element of E(G), is injective and g(f)(V) = {a, a + d,..., a + (vertical bar V vertical bar - 1)d}. Miller and Baca proved that the generalized Petersen graph P(n, 2) is (3n+6/2, 3)-antimagic for n equivalent to 0(mod 4), n >= 8 and conjectured that the generalized Petersen graph P(n, k) is (3n+6/2, 3)-antimagic for even n and 2 <= k <= n/2 - 1 and conjectured that the generalized Petersen graph P(n, k) is (5n+5/2, 2)-antimagic for odd n and 2 <= k <= n/2 - 1. Xu, Yang, Xi and Li proved that the generalized Petersen graph P(n, 3) is (3n+6/2, 3)-antimagic for n equivalent to 0(mod 4), n >= 8. In this paper, we show that the generalized Petersen graph P(n, 5) is (3n+6/2, 3)-antimagic for even n >= 12.
引用
收藏
页码:349 / 356
页数:8
相关论文
共 13 条
  • [1] [Anonymous], AUSTRALASIAN J COMBI
  • [2] [Anonymous], RES EXP MATH
  • [3] [Anonymous], MITT MATH GES HAMBUR
  • [4] Baca M, 1998, ARS COMBINATORIA, V48, P297
  • [5] Baca M, 2000, UTILITAS MATHEMATICA, V58, P237
  • [6] Bodendiek R, 1997, ARS COMBINATORIA, V46, P33
  • [7] Bodendiek R, 1996, ARS COMBINATORIA, V42, P129
  • [8] Bodendiek R., 1993, K WAGNER R BODENDIEK
  • [9] Gallian J. A., 2012, ELECT J COMBINATORIC, V19
  • [10] Hartsfield N., 1990, Pearls in Graph Theory