Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials

被引:16
作者
Wang, Jinqi [1 ]
Liu, Shuchang [1 ]
Guruswamy, Sivaraman [2 ]
Nahata, Ajay [1 ]
机构
[1] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Met Engn, Salt Lake City, UT 84112 USA
关键词
ELECTROMAGNETIC METAMATERIALS; FABRICATION; FREQUENCIES;
D O I
10.1002/adom.201400094
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fabrication of free-standing two- and three-dimensional terahertz metamaterials is demonstrated via injection molding of gallium, a metal that melts at temperatures just slightly above room temperature. Molds are created by inscribing the desired microchannel geometries in one or two polydimethylsiloxane (PDMS) films using conventional soft lithography techniques and then reversibly bonding the two films together using van der Waals forces. After heating gallium above its melting point (similar to 30 degrees C), the liquid metal is injected into the mold. Surprisingly, the metal does not solidify even after cooling the filled mold at -16 degrees C for 24 h. However, when the liquid metal comes into contact with solid gallium at room temperature, the entire metal device solidifies within the mold immediately. The PDMS films can then be peeled away, yielding a free-standing solid gallium structure. A 2D split ring resonator-based metamaterial is fabricated and three different approaches for creating 3D metamaterials are demonstrated: a multilayer stack, a manually folded structure that maintains its shape after folding, and a directly injection molded 3D structure. The transmission properties of these devices are measured using terahertz time-domain spectroscopy and are shown to not suffer from limitations imposed by substrates.
引用
收藏
页码:663 / 669
页数:7
相关论文
共 36 条
[1]  
Ashby M.F., 1982, DEFORMATION MECH MAP
[2]   Effect of disorder on magnetic resonance band gap of split-ring resonator structures [J].
Aydin, K ;
Guven, K ;
Katsarakis, N ;
Soukoulis, CM ;
Ozbay, E .
OPTICS EXPRESS, 2004, 12 (24) :5896-5901
[3]   Atomic mobility in liquid gallium under nanoconfinement [J].
Charnaya, EV ;
Tien, C ;
Wang, W ;
Lee, MK ;
Michel, D ;
Yaskov, D ;
Sun, SY ;
Kumzerov, YA .
PHYSICAL REVIEW B, 2005, 72 (03)
[4]   Complementary planar terahertz metamaterials [J].
Chen, Hou-Tong ;
O'Hara, John F. ;
Taylor, Antoinette J. ;
Averitt, Richard D. ;
Highstrete, C. ;
Lee, Mark ;
Padilla, Willie J. .
OPTICS EXPRESS, 2007, 15 (03) :1084-1095
[5]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[6]   Single-layer terahertz metamaterials with bulk optical constants [J].
Chen, W. -C. ;
Totachawattana, A. ;
Fan, K. ;
Ponsetto, J. L. ;
Strikwerda, A. C. ;
Zhang, X. ;
Averitt, R. D. ;
Padilla, W. J. .
PHYSICAL REVIEW B, 2012, 85 (03)
[7]   Nanoindentation of single-crystalline gold thin films: Correlating hardness and the onset of plasticity [J].
Dietiker, Marianne ;
Nyilas, Ralph D. ;
Solenthaler, Christian ;
Spolenak, Ralph .
ACTA MATERIALIA, 2008, 56 (15) :3887-3899
[8]   Stand-up magnetic metamaterials at terahertz frequencies [J].
Fan, Kebin ;
Strikwerda, Andrew C. ;
Tao, Hu ;
Zhang, Xin ;
Averitt, Richard D. .
OPTICS EXPRESS, 2011, 19 (13) :12619-12627
[9]  
Gordon J.R., 1998, Principles of Physics, V2nd
[10]   FAR-INFRARED TIME-DOMAIN SPECTROSCOPY WITH TERAHERTZ BEAMS OF DIELECTRICS AND SEMICONDUCTORS [J].
GRISCHKOWSKY, D ;
KEIDING, S ;
VANEXTER, M ;
FATTINGER, C .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1990, 7 (10) :2006-2015