Optimal Packings of Congruent Circles on a Square Flat Torus

被引:10
|
作者
Musin, Oleg R. [1 ,2 ]
Nikitenko, Anton V. [3 ]
机构
[1] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA
[2] Russian Acad Sci, Inst Problems Informat Transmiss, Moscow, Russia
[3] IST Austria, A-3400 Klosterneuburg, Austria
基金
美国国家科学基金会;
关键词
Circle packing; Flat torus; Contact graph; Graph enumeration;
D O I
10.1007/s00454-015-9742-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider packings of congruent circles on a square flat torus, i.e., periodic (w.r.t. a square lattice) planar circle packings, with the maximal circle radius. This problem is interesting due to a practical reason-the problem of "super resolution of images." We have found optimal arrangements for , 7 and 8 circles. Surprisingly, for the case there are three different optimal arrangements. Our proof is based on a computer enumeration of toroidal irreducible contact graphs.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] Optimal Packings of Congruent Circles on a Square Flat Torus
    Oleg R. Musin
    Anton V. Nikitenko
    Discrete & Computational Geometry, 2016, 55 : 1 - 20
  • [2] Optimal Packings of Congruent Circles on a Square Flat Torus as Mixed-Integer Nonlinear Optimization Problem
    Voloshinov, Vladimir
    Smirnov, Sergey
    SUPERCOMPUTING (RUSCDAYS 2019), 2019, 1129 : 87 - 97
  • [3] Optimal packings of up to five equal circles on a square flat torus
    Dickinson W.
    Guillot D.
    Keaton A.
    Xhumari S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2011, 52 (2): : 315 - 333
  • [4] Optimal packings of up to six equal circles on a triangular flat torus
    Dickinson W.
    Guillot D.
    Keaton A.
    Xhumari S.
    Journal of Geometry, 2011, 102 (1-2) : 27 - 51
  • [5] Optimal packings of two to four equal circles on any flat torus
    Brandt, Madeline
    Dickinson, William
    Ellsworth, AnnaVictoria
    Kenkel, Jennifer
    Smith, Hanson
    DISCRETE MATHEMATICS, 2019, 342 (12)
  • [6] On covering the square flat torus by congruent discs
    Joos, Antal
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 75 : 113 - 126
  • [7] More optimal packings of equal circles in a square
    Nurmela, KJ
    Östergård, PRJ
    DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 22 (03) : 439 - 457
  • [8] More Optimal Packings of Equal Circles in a Square
    K. J. Nurmela
    P. R. J. Ostergå rd
    Discrete & Computational Geometry, 1999, 22 : 439 - 457
  • [9] Dense packings of congruent circles in a circle
    Graham, RL
    Lubachevsky, BD
    Nurmela, KJ
    Ostergard, PRJ
    DISCRETE MATHEMATICS, 1998, 181 (1-3) : 139 - 154
  • [10] DENSEST PACKINGS OF 11 CONGRUENT CIRCLES IN A CIRCLE
    MELISSEN, H
    GEOMETRIAE DEDICATA, 1994, 50 (01) : 15 - 25