Processing of PLA/sisal fiber biocomposites using direct- and extrusion-injection molding

被引:75
作者
Chaitanya, Saurabh [1 ]
Singh, Inderdeep [1 ]
机构
[1] Indian Inst Technol, Dept Mech & Ind Engn, Roorkee 247667, Uttarakhand, India
关键词
Biocomposites; PLA; extrusion; injection; molding; sisal; MECHANICAL-PROPERTIES; MORPHOLOGICAL PROPERTIES; GREEN COMPOSITES; POLYLACTIC ACID; NATURAL FIBERS; CELLULOSE;
D O I
10.1080/10426914.2016.1198034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The processing strategy adopted to develop biocomposites plays a significant role in determining their characteristics. The present experimental investigation explores the feasibility of using direct-injection molding (D-IM) process for processing of sisal fiber (3mm and 8mm) reinforced poly-lactic acid biocomposites with a fiber weight fraction of 30%. For a comparative analysis, mechanical and morphological behavior of biocomposites developed using D-IM process is compared with biocomposites developed using extrusion-injection molding (E-IM) process. The mechanical behavior in terms of tensile, flexural and impact properties is compared and discussed in relation to extracted fiber morphology and fiber orientation as well as dispersion within the developed biocomposites. Morphological investigation of extracted fibers revealed severe fiber attrition and fiber length variation during E-IM process as compared with D-IM process. However, short sisal fiber (3mm) reinforced biocomposites developed using both the processes exhibit uniform fiber dispersion and orientation, resulting in comparable mechanical properties. The tensile and flexural strength of D-IM-SF biocomposites increased remarkably by 34.7% and 15.9%, respectively, as compared with D-IM-LF biocomposites. Similarly, the tensile and flexural modulus of D-IM-SF biocomposites increased significantly by 92.5% and 56.7%, respectively, as compared with D-IM-LF biocomposites. However, D-IM process incorporating long fibers exhibit better impact properties.
引用
收藏
页码:468 / 474
页数:7
相关论文
共 32 条
[1]   Review of Factors that Affect Shrinkage of Molded Part in Injection Molding [J].
Annicchiarico, Daniele ;
Alcock, Jeffrey R. .
MATERIALS AND MANUFACTURING PROCESSES, 2014, 29 (06) :662-682
[2]   Bio-composites: Development and Mechanical Characterization of Banana/Sisal Fibre Reinforced Poly Lactic Acid (PLA) Hybrid Composites [J].
Asaithambi, B. ;
Ganesan, G. ;
Kumar, S. Ananda .
FIBERS AND POLYMERS, 2014, 15 (04) :847-854
[3]   Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites [J].
Awal, A. ;
Rana, M. ;
Sain, M. .
MECHANICS OF MATERIALS, 2015, 80 :87-95
[4]   A review on the degradability of polymeric composites based on natural fibres [J].
Azwa, Z. N. ;
Yousif, B. F. ;
Manalo, A. C. ;
Karunasena, W. .
MATERIALS & DESIGN, 2013, 47 :424-442
[5]   Preparation and Mechanical Characterization of Chicken Feather/PLA Composites [J].
Baba, Buket Okutan ;
Ozmen, Ugur .
POLYMER COMPOSITES, 2017, 38 (05) :837-845
[6]   Development and characterization of PLA-based green composites: A review [J].
Bajpai, Pramendra Kumar ;
Singh, Inderdeep ;
Madaan, Jitendra .
JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2014, 27 (01) :52-81
[7]   Comparative studies of mechanical and morphological properties of polylactic acid and polypropylene based natural fiber composites [J].
Bajpai, Pramendra Kumar ;
Singh, Inderdeep ;
Madaan, Jitendra .
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2012, 31 (24) :1712-1724
[8]   Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite [J].
Ben Brahim, Sami ;
Ben Cheikh, Rldha .
COMPOSITES SCIENCE AND TECHNOLOGY, 2007, 67 (01) :140-147
[9]   Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres - A comparative study to PP [J].
Bledzki, A. K. ;
Jaszkiewicz, A. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (12) :1687-1696
[10]   Mechanical properties of PLA composites with man-made cellulose and abaca fibres [J].
Bledzki, Andrzej K. ;
Jaszkiewicz, Adam ;
Scherzer, Dietrich .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2009, 40 (04) :404-412