A bound on the spectral radius of hypergraphs with e edges

被引:14
作者
Bai, Shuliang [1 ]
Lu, Linyuan [1 ]
机构
[1] Univ South Carolina, Columbia, SC 29208 USA
关键词
Spectral radius; Uniform hypergraph; Adjacency tensor; alpha-normal labeling; Stanley's theorem; PERRON-FROBENIUS THEOREM; NONNEGATIVE TENSORS; UNIFORM SUPERTREES; GRAPHS;
D O I
10.1016/j.laa.2018.03.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For r >= 3, let f(r): [0, infinity) -> [1, infinity) be the unique analytic function such that f(r)(((k)(r)) = ((k-1)(r-1)) for any k >= r - 1. We prove that the spectral radius of an r-uniform hypergraph H with e edges is at most f(r)(e). The equality holds if and only if e = ((k)(r)) for some positive integer k and H is the union of a complete r-uniform hypergraph K-k(r) and some possible isolated vertices. This result generalizes the classical Stanley's theorem on graphs. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:203 / 218
页数:16
相关论文
共 21 条
[1]   ON THE SPECTRAL-RADIUS OF (0,1)-MATRICES [J].
BRUALDI, RA ;
HOFFMAN, AJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 65 (FEB) :133-146
[2]  
Chang KC, 2008, COMMUN MATH SCI, V6, P507
[3]   A survey on the spectral theory of nonnegative tensors [J].
Chang, Kungching ;
Qi, Liqun ;
Zhang, Tan .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (06) :891-912
[4]  
Chen D., 2017, FRONT MATH CHINA, DOI [10.1007/811464-017-0626-3, DOI 10.1007/811464-017-0626-3]
[5]   Spectra of uniform hypergraphs [J].
Cooper, Joshua ;
Dutle, Aaron .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) :3268-3292
[6]   MAXIMIZING SPECTRAL RADII OF UNIFORM HYPERGRAPHS WITH FEW EDGES [J].
Fan, Yi-Zheng ;
Tan, Ying-Ying ;
Peng, Xi-Xi ;
Liu, An-Hong .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (04) :845-856
[7]   BOUNDS ON THE SPECTRAL-RADIUS OF GRAPHS WITH E-EDGES [J].
FRIEDLAND, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 101 :81-86
[8]   Perron-Frobenius theorem for nonnegative multilinear forms and extensions [J].
Friedland, S. ;
Gaubert, S. ;
Han, L. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (02) :738-749
[9]  
Kang L., ARXIV160501750MATHCO
[10]  
Katona G.O.H., 1968, Theory of graphs, P187