Real topological Hochschild homology

被引:7
作者
Dotto, Emanuele [1 ]
Moi, Kristian [2 ]
Patchkoria, Irakli [3 ]
Reeh, Sune Precht
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
[2] KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
[3] Univ Aberdeen, Inst Math, Fraser Noble Bldg, Aberdeen AB24 3UE, Scotland
基金
新加坡国家研究基金会;
关键词
Hochschild homology; involution; ring spectra; ALGEBRAIC K-THEORY; HOMOTOPY-THEORY; WITT VECTORS; MODEL CATEGORIES; FUNCTORS; COMPLETION; THEOREMS; SPECTRA; PRODUCT; SPACES;
D O I
10.4171/JEMS/1007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper interprets Hesselholt and Madsen's real topological Hochschild homology functor THR in terms of the multiplicative norm construction. We show that THR satisfies cofinality and Morita invariance, and that it is suitably multiplicative. We then calculate its geometric fixed points and its Mackey functor of components, and show a decomposition result for group algebras. Using these structural results we determine the homotopy type of THR(F-p) and show that its bigraded homotopy groups are polynomial on one generator over the bigraded homotopy groups of H F-p. We then calculate the homotopy type of THR(Z) away from the prime 2, and the homotopy ring of the geometric fixed points spectrum Phi(Z/2) THR(Z).
引用
收藏
页码:63 / 152
页数:90
相关论文
共 81 条
  • [1] Hopf algebra structure on topological Hochschild homology
    Angeltveit, Vigleik
    Rognes, John
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2005, 5 : 1223 - 1290
  • [2] INTERPRETING THE BOKSTEDT SMASH PRODUCT AS THE NORM
    Angeltveit, Vigleik
    Blumberg, Andrew J.
    Gerhardt, Teena
    Hill, Michael A.
    Lawson, Tyler
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) : 5419 - 5433
  • [3] [Anonymous], 1998, GRUNDLEHREN MATH WIS
  • [4] The Witt vectors for Green functors
    Blumberg, Andrew J.
    Gerhardt, Teena
    Hill, Michael A.
    Lawson, Tyler
    [J]. JOURNAL OF ALGEBRA, 2019, 537 : 197 - 244
  • [5] The homotopy theory of cyclotomic spectra
    Blumberg, Andrew J.
    Mandell, Michael A.
    [J]. GEOMETRY & TOPOLOGY, 2015, 19 (06) : 3105 - 3147
  • [6] Localization theorems in topological Hochschild homology and topological cyclic homology
    Blumberg, Andrew J.
    Mandell, Michael A.
    [J]. GEOMETRY & TOPOLOGY, 2012, 16 (02) : 1053 - 1120
  • [7] THE CYCLOTOMIC TRACE AND ALGEBRAIC K-THEORY OF SPACES
    BOKSTEDT, M
    HSIANG, WC
    MADSEN, I
    [J]. INVENTIONES MATHEMATICAE, 1993, 111 (03) : 465 - 540
  • [8] BOKSTEDT M, 1993, COMPOS MATH, V86, P209
  • [9] Bokstedt M., 1986, PREPRINT
  • [10] BOKSTEDT MARCEL, PREPRINT