Exact solutions in Chiral cosmology

被引:40
作者
Paliathanasis, Andronikos [1 ]
Leon, Genly [2 ]
Pan, Supriya [3 ]
机构
[1] Durban Univ Technol, Inst Syst Sci, POB 1334, ZA-4000 Durban, South Africa
[2] Univ Catolica Norte, Dept Matemat, Avda Angamos 0610,Casilla 1280, Antofagasta, Chile
[3] Presidency Univ, Dept Math, 86-1 Coll St, Kolkata 700073, India
关键词
Cosmology; Exact solutions; Multi scalar field; Chiral cosmology; alpha-Attractor; FIELD; CONSTANT; QUANTITIES; INFLATION; MATTER;
D O I
10.1007/s10714-019-2594-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In multi-scalar field cosmologies new dynamical degrees of freedom are introduced which can explain the observational phenomena. Unlike the usual scalar field theory where a single scalar field is considered, the multi-scalar field cosmologies allow more than one scalar field and exhibits interetsing consequences, such as quintom, hybrid inflation etc. The current work study the existence of exact solutions and integrable dynamical systems in multi-scalar field cosmology and more specifically in the so-called Chiral cosmology where nonlinear terms exists in the kinetic term of the scalar fields. We present the exact analytic solutions for a system of N-scalar fields. In particular, we consider a multi scalar field cosmological scenario comprised of N-scalar fields that are minimally coupled to the Einstein gravity. The geometry of the universe is described by the spatially flat homogeneous and isotropic line element and the scalar fields may interact in their kinetic or/and potential terms. Within this set up, we show that for a specific geometry in the kinetic part of the scalar fields and specific potential form, the gravitational field equations for the class of N-scalar field models can be exactly solved. More specifically, we show that the Einstein field equations in N-scalar field cosmology can be reduced to that of a (N + 1)-linear system.
引用
收藏
页数:15
相关论文
共 98 条
[1]   Cosmology from random multifield potentials [J].
Aazami, A ;
Easther, R .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2006, (03)
[2]  
Achuracco A., ARXIV180704390
[3]   Planck 2015 results XIII. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Bartolo, N. ;
Battaner, E. ;
Battye, R. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chiang, H. C. ;
Chluba, J. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[4]   QUANTUM COSMOLOGY OF MULTIFIELD SCALAR MATTER: SOME EXACT SOLUTIONS [J].
Andrianov, A. A. ;
Novikov, O. O. ;
Chen, Lan .
THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 184 (03) :1224-1233
[5]  
[Anonymous], ARXIV180309841
[6]   Stable exact solutions in cosmological models with two scalar fields [J].
Aref'eva, I. Ya. ;
Bulatov, N. V. ;
Vernov, S. Yu. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 163 (03) :788-803
[7]   Scalar fields in Cosmology: dark matter and inflation [J].
Arturo Urena-Lopez, L. .
30TH ANNUAL MEETING OF THE DIVISION OF PARTICLES AND FIELDS (DPYC) OF THE MEXICAN PHYSICAL SOCIETY / XV MEXICAN WORKSHOP ON PARTICLES AND FIELDS (MWPF), 2016, 761
[8]   SCALAR-FIELD COSMOLOGIES [J].
BARROW, JD ;
SAICH, P .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (02) :279-283
[9]   NEW TYPES OF INFLATIONARY UNIVERSE [J].
BARROW, JD .
PHYSICAL REVIEW D, 1993, 48 (04) :1585-1590
[10]   Observational constraints on new exact inflationary scalar-field solutions [J].
Barrow, John D. ;
Paliathanasis, Andronikos .
PHYSICAL REVIEW D, 2016, 94 (08)