On the zeros of generalized Hurwitz zeta functions

被引:4
作者
Chatterjee, T. [1 ]
Gun, S. [2 ]
机构
[1] Indian Inst Technol, Dept Math, Rupnagar 140001, Punjab, India
[2] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
Generalized Hurwitz zeta functions; Kronecker theorem;
D O I
10.1016/j.jnt.2014.06.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove the existence of infinitely many zeros of certain generalized Hurwitz zeta functions in the domain of absolute convergence. This is a generalization of a classical problem of Davenport, Heilbronn and Cassels about the zeros of the Hurwitz zeta function. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:352 / 361
页数:10
相关论文
共 6 条
[1]  
[Бомбьери Энрико Bombieri Enrico], 2011, [Успехи математических наук, Russian Mathematical Surveys, Uspekhi matematicheskikh nauk], V66, P15, DOI 10.4213/rm9410
[2]  
Booker A. R., ARXIV13066362
[3]  
Cassels J.W.S., 1961, J. Lond. Math. Soc, V36, P177, DOI [10.1112/jlms/s1-36.1.177, DOI 10.1112/JLMS/S1-36.1.177]
[4]  
CHANDRASEKHARAN K, 1968, GRUNDLEHREN MATH WIS, V148
[5]  
Davenport H., 1936, P LOND MATH SOC, V11, P181
[6]   Zeros of Dirichlet series with periodic coefficients [J].
Saias, Eric ;
Weingartner, Andreas .
ACTA ARITHMETICA, 2009, 140 (04) :335-344