ON A CONVERGENT PROCESS OF BERNSTEIN

被引:2
|
作者
Szili, Laszlo [1 ]
Vertesi, Peter [2 ]
机构
[1] Eotvos Lorand Univ, Dept Numer Anal, Budapest, Hungary
[2] Hungarian Acad Sci, Alfred Renyi Math Inst, Budapest, Hungary
来源
关键词
interpolation; Bernstein process; Jacobi roots;
D O I
10.2298/PIM1410233S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bernstein in 1930 defined a convergent interpolation process based on the roots of the Chebyshev polynomials. We prove a similar statement for certain Jacobi roots.
引用
收藏
页码:233 / 238
页数:6
相关论文
共 50 条
  • [21] A CONVERGENT RATE PROBLEM ASSOCIATED WITH THE WIENER PROCESS
    LIU, KH
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1988, 31 (04): : 385 - 394
  • [22] Pattern and Process in the Comparative Study of Convergent Evolution
    Mahler, D. Luke
    Weber, Marjorie G.
    Wagner, Catherine E.
    Ingram, Travis
    AMERICAN NATURALIST, 2017, 190 : S13 - S28
  • [23] Of a new interpolation process of S. N. Bernstein
    He, JX
    Zhang, YL
    Li, ST
    ACTA MATHEMATICA HUNGARICA, 1996, 73 (04) : 327 - 334
  • [24] A NEW ESTIMATE ON AN INTERPOLATION PROCESS OF BERNSTEIN,S.N.
    SUN, XH
    KEXUE TONGBAO, 1984, 29 (05): : 705 - 706
  • [25] A semiparametric Bernstein–von Mises theorem for Gaussian process priors
    Ismaël Castillo
    Probability Theory and Related Fields, 2012, 152 : 53 - 99
  • [26] POINTWISE ESTIMATES FOR AN INTERPOLATION PROCESS OF BERNSTEIN,S.N.
    VARMA, AK
    YU, XM
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1991, 51 : 284 - 299
  • [27] Convergent nonlinear control for uncertain process plants.
    Zaher, A
    Zohdy, M
    Areed, F
    Soliman, K
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 5135 - 5140
  • [28] QUICKLY CONVERGENT ITERATION PROCESS FOR SOLUTION OF NONLINEAR EQUATIONS
    MADORSKII, VM
    DOKLADY AKADEMII NAUK BELARUSI, 1976, 20 (03): : 203 - 204
  • [29] A CONVERGENT SERIES REPRESENTATION FOR THE DENSITY OF THE SUPREMUM OF A STABLE PROCESS
    Hubalek, Friedrich
    Kuznetsov, Alexey
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 84 - 95
  • [30] A globally convergent price adjustment process for exchange economies
    Joosten, R
    Talman, D
    JOURNAL OF MATHEMATICAL ECONOMICS, 1998, 29 (01) : 15 - 26