ON A CONVERGENT PROCESS OF BERNSTEIN

被引:2
|
作者
Szili, Laszlo [1 ]
Vertesi, Peter [2 ]
机构
[1] Eotvos Lorand Univ, Dept Numer Anal, Budapest, Hungary
[2] Hungarian Acad Sci, Alfred Renyi Math Inst, Budapest, Hungary
来源
关键词
interpolation; Bernstein process; Jacobi roots;
D O I
10.2298/PIM1410233S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bernstein in 1930 defined a convergent interpolation process based on the roots of the Chebyshev polynomials. We prove a similar statement for certain Jacobi roots.
引用
收藏
页码:233 / 238
页数:6
相关论文
共 50 条
  • [1] Convergent inversion approximations for polynomials in Bernstein form
    Farouki, RT
    COMPUTER AIDED GEOMETRIC DESIGN, 2000, 17 (02) : 179 - 196
  • [2] A CONVERGENT ITERATIVE PROCESS
    SAMUELSON, PA
    JOURNAL OF MATHEMATICS AND PHYSICS, 1945, 24 (04): : 131 - 134
  • [3] Convergent cyclopentannelation process
    Bee, C
    Tius, MA
    ORGANIC LETTERS, 2003, 5 (10) : 1681 - 1684
  • [4] THE DISTRIBUTION OF NODES IN THE BERNSTEIN INTERPOLATION PROCESS
    BERMAN, DL
    DOKLADY AKADEMII NAUK SSSR, 1958, 119 (06): : 1063 - 1065
  • [5] Bernstein processes associated with a Markov process
    Cruzeiro, AB
    Wu, LM
    Zambrini, JC
    STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS (ANESTOC '98), 2000, : 41 - 72
  • [6] Biosynthesis of fosfazinomycin is a convergent process
    Huang, Zedu
    Wang, Kwo-Kwang A.
    Lee, Jaeheon
    van der Donk, Wilfred A.
    CHEMICAL SCIENCE, 2015, 6 (02) : 1282 - 1287
  • [7] A CONVERGENT PRICE ADJUSTMENT PROCESS
    VANDERLAAN, G
    TALMAN, AJJ
    ECONOMICS LETTERS, 1987, 23 (02) : 119 - 123
  • [8] AN INTERPOLATION PROCESS BY BERNSTEIN,S.N.
    GUNTTNER, R
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1982, 40 (3-4): : 313 - 322
  • [10] The empirical Bernstein process with application to uniformity testing
    Sun, Ran
    Belalia, Mohamed
    Nkurunziza, Severien
    STATISTICAL PAPERS, 2025, 66 (02)