Given a totally real field F and a prime integer p which is unramified in F, we construct p-adic families of overconvergent Hilbert modular forms (of non-necessarily parallel weight) as sections of, so called, overconvergent Hilbert modular sheaves. We prove that the classical Hilbert modular forms of integral weights are overconvergent in our sense. We compare our notion with Katz's definition of p-adic Hilbert modular forms. For F = Q, we prove that our notion of (families of) overconvergent elliptic modular forms coincides with those of R. Coleman and V. Pilloni.
机构:
Univ Caen Basse Normandie, CNRS UMR 6139, Lab Math Nicolas Oresme, F-14032 Caen, FranceUniv Caen Basse Normandie, CNRS UMR 6139, Lab Math Nicolas Oresme, F-14032 Caen, France
Nicole, Marc-Hubert
Rosso, Giovanni
论文数: 0引用数: 0
h-index: 0
机构:
Dept Math & Stat, Montreal, PQ, CanadaUniv Caen Basse Normandie, CNRS UMR 6139, Lab Math Nicolas Oresme, F-14032 Caen, France
Rosso, Giovanni
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX,
2021,
33
(03):
: 1045
-
1067
机构:
Univ Lille 1, Lab Paul Painleve, Villeneuve Dascq, France
Inst Univ France, Paris, France
Natl Res Univ, Higher Sch Econ, Moscow, RussiaUniv Lille 1, Lab Paul Painleve, Villeneuve Dascq, France