OVERCONVERGENT MODULAR SHEAVES AND MODULAR FORMS FOR GL2/F

被引:27
作者
Andreatta, Fabrizio [1 ]
Iovita, Adrian [2 ,3 ]
Stevens, Glenn [4 ]
机构
[1] Univ Milan, Dipartimento Matemat Federigo Enriques, I-20133 Milan, Italy
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
[3] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
[4] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
关键词
CANONICAL SUBGROUP; FAMILIES; SPACES;
D O I
10.1007/s11856-014-1045-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a totally real field F and a prime integer p which is unramified in F, we construct p-adic families of overconvergent Hilbert modular forms (of non-necessarily parallel weight) as sections of, so called, overconvergent Hilbert modular sheaves. We prove that the classical Hilbert modular forms of integral weights are overconvergent in our sense. We compare our notion with Katz's definition of p-adic Hilbert modular forms. For F = Q, we prove that our notion of (families of) overconvergent elliptic modular forms coincides with those of R. Coleman and V. Pilloni.
引用
收藏
页码:299 / 359
页数:61
相关论文
共 25 条
[1]   The canonical subgroup for families of abelian varieties [J].
Andreatta, F. ;
Gasbarri, C. .
COMPOSITIO MATHEMATICA, 2007, 143 (03) :566-602
[2]  
Andreatta F., 2005, AM MATH SOC MEMOIRS, V819
[3]  
Andreatta F., 2012, CUSPIDAL PART UNPUB
[4]  
Brinon O., 2008, MEMOIRES SOC MATH FR, V112
[5]  
Coleman RF, 2005, ASIAN J MATH, V9, P257
[6]   P-adic Banach spaces and families of modular forms [J].
Coleman, RF .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :417-479
[7]   Classical and overconvergent modular forms [J].
Coleman, RF .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :215-241
[8]   HODGE-TATE STRUCTURES AND MODULAR-FORMS [J].
FALTINGS, G .
MATHEMATISCHE ANNALEN, 1987, 278 (1-4) :133-149
[9]  
Faltings G, 1990, Ergebnisse der Math., V3/ 22
[10]  
FALTINGS G, 2002, ASTERISQUE, V279