Layered convolutional dictionary learning for sparse coding itemsets

被引:1
作者
Mansha, Sameen [1 ]
Hoang Thanh Lam [2 ]
Yin, Hongzhi [1 ]
Kamiran, Faisal [3 ]
Ali, Mohsen [3 ]
机构
[1] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld, Australia
[2] IBM Res, Dublin, Ireland
[3] Informat Technol Univ Punjab, Lahore, Pakistan
来源
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS | 2019年 / 22卷 / 05期
关键词
Interesting itemset mining; Convolutional sparse dictionary learning; Lossless compression; Deep learning; PATTERNS;
D O I
10.1007/s11280-018-0565-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dictionary learning for sparse coding has been successfully used in different domains, however, has never been employed for the interesting itemset mining. In this paper, we formulate an optimization problem for extracting a sparse representation of itemsets and show that the discrete nature of itemsets makes it NP-hard. An efficient approximation algorithm is presented which greedily solves maximum set cover to reduce overall compression loss. Furthermore, we incorporate our sparse representation algorithm into a layered convolutional model to learn nonredundant dictionary items. Following the intuition of deep learning, our convolutional dictionary learning approach convolves learned dictionary items and discovers statistically dependent patterns using chi-square in a hierarchical fashion; each layer having more abstract and compressed dictionary than the previous. An extensive empirical validation is performed on thirteen datasets, showing better interpretability and semantic coherence of our approach than two existing state-of-the-art methods.
引用
收藏
页码:2225 / 2239
页数:15
相关论文
共 50 条
[21]   A feature representation of sketch based on fusion of sparse coding and deep learning [J].
Zhao P. ;
Gao J.-C. ;
Feng C.-C. ;
Han L. .
Kongzhi yu Juece/Control and Decision, 2021, 36 (03) :699-704
[22]   Piano multipitch estimation using sparse coding embedded deep learning [J].
Li, Xingda ;
Guan, Yujing ;
Wu, Yingnian ;
Zhang, Zhongbo .
EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2018,
[23]   Deep unfolding for multi-measurement vector convolutional sparse coding to denoise unobtrusive electrocardiography signals [J].
Fotiadou, Eleni ;
Melaet, Raoul ;
Vullings, Rik .
FRONTIERS IN SIGNAL PROCESSING, 2022, 2
[24]   CSC-Unet: A Novel Convolutional Sparse Coding Strategy Based Neural Network for Semantic Segmentation [J].
Tang, Haitong ;
He, Shuang ;
Yang, Mengduo ;
Lu, Xia ;
Yu, Qin ;
Liu, Kaiyue ;
Yan, Hongjie ;
Wang, Nizhuan .
IEEE ACCESS, 2024, 12 :35844-35854
[25]   Convolutional sparse-coding-based 3DV image super-resolution framework [J].
El-Shafai, Walid ;
Abd El-Fatah, Mohamed A. ;
Dessouky, Moawad I. ;
Khalaf, Ashraf A. M. ;
Abd El-Samie, Fathi E. .
JOURNAL OF OPTICS-INDIA, 2024, 53 (05) :4930-4942
[26]   Sparse Coding: A Deep Learning using Unlabeled Data for High - Level Representation [J].
Vidya, R. ;
Nasira, G. M. ;
Priyankka, R. P. Jaia .
2014 WORLD CONGRESS ON COMPUTING AND COMMUNICATION TECHNOLOGIES (WCCCT 2014), 2014, :124-+
[27]   Sparse coding of pathology slides compared to transfer learning with deep neural networks [J].
Will Fischer ;
Sanketh S. Moudgalya ;
Judith D. Cohn ;
Nga T. T. Nguyen ;
Garrett T. Kenyon .
BMC Bioinformatics, 19
[28]   Sparse coding of pathology slides compared to transfer learning with deep neural networks [J].
Fischer, Will ;
Moudgalya, Sanketh S. ;
Cohn, Judith D. ;
Nguyen, Nga T. T. ;
Kenyon, Garrett T. .
BMC BIOINFORMATICS, 2018, 19
[29]   Sparse subspace clustering incorporated deep convolutional transform learning for hyperspectral band selection [J].
Goel, Anurag ;
Majumdar, Angshul .
EARTH SCIENCE INFORMATICS, 2024, 17 (03) :2727-2735
[30]   Deep Denoising Sparse Coding [J].
Wang, Yijie ;
Yang, Bo .
2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, :681-685