Metallization of Shock-Compressed Liquid Ammonia

被引:26
|
作者
Ravasio, A. [1 ]
Bethkenhagen, M. [2 ,3 ]
Hernandez, J-A [1 ,4 ]
Benuzzi-Mounaix, A. [1 ]
Datchi, F. [5 ]
French, M. [3 ]
Guarguaglini, M. [1 ]
Lefevre, F. [1 ]
Ninet, S. [5 ]
Redmer, R. [3 ]
Vinci, T. [1 ]
机构
[1] Ecole Polytech, Inst Polytech Paris, CNRS, LULI,CEA, Route Saclay, F-91128 Palaiseau, France
[2] Univ Lyon 1, Ecole Normale Super Lyon, Lab Geol Lyon, CNRS UMR 5276, F-69364 Lyon 07, France
[3] Univ Rostock, Inst Phys, D-18051 Rostock, Germany
[4] Univ Oslo, Ctr Earth Evolut & Dynam, N-0315 Oslo, Norway
[5] Sorbonne Univ, Inst Mineral Phys Mat & Cosmochim IMPMC, MNHN, CNRS UMR 7590, 4 Pl Jussieu, F-75005 Paris, France
关键词
INITIO MOLECULAR-DYNAMICS; EQUATION-OF-STATE; ELECTRICAL-CONDUCTIVITY; INTERIOR STRUCTURE; PLANETARY ICES; SOLID AMMONIA; HIGH-PRESSURE; URANUS; WATER; MODELS;
D O I
10.1103/PhysRevLett.126.025003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Ammonia is predicted to be one of the major components in the depths of the ice giant planets Uranus and Neptune. Their dynamics, evolution, and interior structure are insufficiently understood and models rely imperatively on data for equation of state and transport properties. Despite its great significance, the experimentally accessed region of the ammonia phase diagram today is still very limited in pressure and temperature. Here we push the probed regime to unprecedented conditions, up to similar to 350 GPa and similar to 40 000 K. Along the Hugoniot, the temperature measured as a function of pressure shows a subtle change in slope at similar to 7000 K and similar to 90 GPa, in agreement with ab initio simulations we have performed. This feature coincides with the gradual transition from a molecular liquid to a plasma state. Additionally, we performed reflectivity measurements, providing the first experimental evidence of electronic conduction in high-pressure ammonia. Shock reflectance continuously rises with pressure above 50 GPa and reaches saturation values above 120 GPa. Corresponding electrical conductivity values are up to 1 order of magnitude higher than in water in the 100 GPa regime, with possible significant contributions of the predicted ammonia-rich layers to the generation of magnetic dynamos in ice giant interiors.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Model for shock-compressed liquid deuterium
    Ross, M
    CONTRIBUTIONS TO PLASMA PHYSICS, 1999, 39 (1-2) : 17 - 20
  • [2] INDEX OF REFRACTION OF SHOCK-COMPRESSED LIQUID NITROMETHANE
    HARDESTY, DR
    JOURNAL OF APPLIED PHYSICS, 1976, 47 (05) : 1994 - 1998
  • [3] Detonation propagation in shock-compressed liquid explosives
    Petel, OE
    Tanguay, V
    Higgins, AJ
    Yoshinaka, AC
    Zhang, F
    SHOCK COMPRESSION OF CONDENSED MATTER - 2003, PTS 1 AND 2, PROCEEDINGS, 2004, 706 : 883 - 886
  • [4] ELECTRICAL CONDUCTIVITY OF SHOCK-COMPRESSED LIQUID XE
    ROSS, M
    KEELER, RN
    MITCHELL, AC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (12): : 1660 - &
  • [5] Effect of chainlike structures on shock-compressed liquid deuterium
    Ross, M
    Yang, LH
    PHYSICAL REVIEW B, 2001, 64 (13)
  • [6] Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures
    Hartley, N. J.
    Vorberger, J.
    Doppner, T.
    Cowan, T.
    Falcone, R. W.
    Fletcher, L. B.
    Frydrych, S.
    Galtier, E.
    Gamboa, E. J.
    Gericke, D. O.
    Glenzer, S. H.
    Granados, E.
    MacDonald, M. J.
    MacKinnon, A. J.
    McBride, E. E.
    Nam, I
    Neumayer, P.
    Pak, A.
    Rohatsch, K.
    Saunders, A. M.
    Schuster, A. K.
    Sun, P.
    van Driel, T.
    Kraus, D.
    PHYSICAL REVIEW LETTERS, 2018, 121 (24)
  • [7] A new equation of state for shock-compressed liquid deuterium
    Arnault, P
    Caillol, JM
    Gilles, D
    Legrand, P
    Perrot, F
    Renard, F
    JOURNAL DE PHYSIQUE IV, 2000, 10 (P5): : 287 - 290
  • [8] SHOCK-COMPRESSED LIQUIDS
    NELLIS, WJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (04): : 717 - 718
  • [9] Initiation of detonation in multiple shock-compressed liquid explosives
    Yoshinaka, A. C.
    Zhang, F.
    Petel, O. E.
    Higgins, A. J.
    Shock Compression of Condensed Matter - 2005, Pts 1 and 2, 2006, 845 : 1139 - 1142
  • [10] Molecular-dynamics modeling of shock-compressed liquid hydrogen
    Lenosky, TJ
    Kress, JD
    Collins, LA
    Kwon, I
    PHYSICAL REVIEW B, 1997, 55 (18): : 11907 - 11910