Structural Insight into the DNA Binding Function of Transcription Factor ERF

被引:2
作者
Hou, Caixia [1 ]
McCown, Claudia [2 ]
Ivanov, Dmitri N. [2 ]
Tsodikov, Oleg, V [1 ]
机构
[1] Univ Kentucky, Coll Pharm, Dept Pharmaceut Sci, Lexington, KY 40536 USA
[2] Univ Texas Hlth Sci Ctr San Antonio, Dept Biochem, San Antonio, TX 78229 USA
基金
美国国家卫生研究院;
关键词
ETS DOMAIN; CRYSTAL-STRUCTURE; CHROMOSOMAL LOCALIZATION; TERMINAL DOMAIN; REPRESSOR ERF; CELL-CYCLE; C-MYC; PROTEIN; FAMILY; AUTOINHIBITION;
D O I
10.1021/acs.biochem.0c00774
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ETS family transcription factors control development of different cell types in humans, whereas deregulation of these proteins leads to severe developmental syndromes and cancers. One of a few members of the ETS family that are known to act solely as repressors, ERF, is required for normal osteogenesis and hematopoiesis. Another important function of ERF is acting as a tumor suppressor by antagonizing oncogenic fusions involving other ETS family factors. The structure of ERF and the DNA binding properties specific to this protein have not been elucidated. In this study, we determined two crystal structures of the complexes of the DNA binding domain of ERF with DNA. In one, ERF is in a distinct dimeric form, with Cys72 in a reduced state. In the other, two dimers of ERF are assembled into a tetramer that is additionally locked by two Cys72-Cys72 disulfide bonds across the dimers. In the tetramer, the ERF molecules are bound to a pseudocontinuous DNA on the same DNA face at two GGAA binding sites on opposite strands. Sedimentation velocity analysis showed that this tetrameric assembly forms on continuous DNA containing such tandem sites spaced by 7 bp. Our bioinformatic analysis of three previously reported sets of ERF binding loci across entire genomes showed that these loci were enriched in such 7 bp spaced tandem sites. Taken together, these results strongly suggest that the observed tetrameric assembly is a functional state of ERF in the human cell.
引用
收藏
页码:4499 / 4506
页数:8
相关论文
共 50 条
  • [1] Structural Basis for Dimerization and DNA Binding of Transcription Factor FLI1
    Hou, Caixia
    Tsodikov, Oleg V.
    BIOCHEMISTRY, 2015, 54 (50) : 7365 - 7374
  • [2] A Structural Analysis of DNA Binding by Myelin Transcription Factor 1 Double Zinc Fingers
    Gamsjaeger, Roland
    O'Connell, Mitchell R.
    Cubeddu, Liza
    Shepherd, Nicholas E.
    Lowry, Jason A.
    Kwan, Ann H.
    Vandevenne, Marylene
    Swanton, Michael K.
    Matthews, Jacqueline M.
    Mackay, Joel P.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (49) : 35180 - 35191
  • [3] Structural Modeling and DNA Binding Autoinhibition Analysis of Ergp55, a Critical Transcription Factor in Prostate Cancer
    Gangwar, Shanti P.
    Dey, Sharmistha
    Saxena, Ajay K.
    PLOS ONE, 2012, 7 (06):
  • [4] Inhibition of transcription factor assembly and structural stability on mitoxantrone binding with DNA
    Khan, Shahper N.
    Danishuddin, Mohd
    Khan, Asad U.
    BIOSCIENCE REPORTS, 2010, 30 (05) : 331 - 340
  • [5] Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites
    Anderson, Dave W.
    McKeown, Alesia N.
    Thornton, Joseph W.
    ELIFE, 2015, 4
  • [6] Structural and biophysical analysis of the DNA binding properties of myelin transcription factor 1
    Gamsjaeger, Roland
    Swanton, Michael K.
    Kobus, Felix J.
    Lehtomaki, Eija
    Lowry, Jason A.
    Kwan, Ann H.
    Matthews, Jacqueline M.
    Mackay, Joel P.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (08) : 5158 - 5167
  • [7] Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A
    Gangelhoff, Todd A.
    Mungalachetty, Purnima S.
    Nix, Jay C.
    Churchill, Mair E. A.
    NUCLEIC ACIDS RESEARCH, 2009, 37 (10) : 3153 - 3164
  • [8] Structural Insight Into the Function of DnaB Helicase in Bacterial DNA Replication
    Zhang, Zhiming
    Chen, Jiang
    Yao, Maochun
    Wang, Ganggang
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2025, 93 (02) : 420 - 429
  • [9] Structural perspective of cooperative transcription factor binding
    Morgunova, Ekaterina
    Taipale, Jussi
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2017, 47 : 1 - 8
  • [10] Structural insights into cooperative DNA recognition by the CCAAT-binding complex and its bZIP transcription factor HapX
    Huber, Eva M.
    Hortschansky, Peter
    Scheven, Mareike T.
    Misslinger, Matthias
    Haas, Hubertus
    Brakhage, Axel A.
    Groll, Michael
    STRUCTURE, 2022, 30 (07) : 934 - +