UPPER BOUND FOR THE NUMBER OF DISTINCT EIGENVALUES OF A PERTURBED MATRIX

被引:3
作者
Moon, Sunyo [1 ]
Park, Seungkook [1 ]
机构
[1] Sookmyung Womens Univ, Dept Math, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Distinct eigenvalues; Perturbation; Geometric multiplicity; Algebraic multiplicity;
D O I
10.13001/1081-3810.3588
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2016, Farrell presented an upper bound for the number of distinct eigenvalues of a perturbed matrix. Xu (2017), and Wang and Wu (2016) introduced upper bounds which are sharper than Farrell's bound. In this paper, the upper bounds given by Xu, and Wang and Wu are improved.
引用
收藏
页码:115 / 124
页数:10
相关论文
共 11 条
  • [1] RANK-ONE MODIFICATION OF SYMMETRIC EIGENPROBLEM
    BUNCH, JR
    NIELSEN, CP
    SORENSEN, DC
    [J]. NUMERISCHE MATHEMATIK, 1978, 31 (01) : 31 - 48
  • [2] THE NUMBER OF DISTINCT EIGENVALUES OF A MATRIX AFTER PERTURBATION
    Farrell, P. E.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (02) : 572 - 576
  • [3] GOLUB GH, 1973, SIAM REV, V15, P318, DOI 10.1137/1015032
  • [4] REFINED PERTURBATION BOUNDS FOR EIGENVALUES OF HERMITIAN AND NON-HERMITIAN MATRICES
    Ipsen, I. C. F.
    Nadler, B.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (01) : 40 - 53
  • [5] Marsaglia G., 1974, Linear Multilinear A., V2, P269, DOI [10.1080/03081087408817070, DOI 10.1080/03081087408817070]
  • [6] Marsaglia G., 1964, BOEING SCI RES LAB M
  • [7] JORDAN FORMS OF REAL AND COMPLEX MATRICES UNDER RANK ONE PERTURBATIONS
    Mehl, Christian
    Mehrmann, Volker
    Ran, Andre C. M.
    Rodman, Leiba
    [J]. OPERATORS AND MATRICES, 2013, 7 (02): : 381 - 398
  • [8] Low rank perturbation of Jordan structure
    Moro, J
    Dopico, FM
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) : 495 - 506
  • [9] Typical changes in spectral properties under perturbations by a rank-one operator
    Savchenko, SV
    [J]. MATHEMATICAL NOTES, 2003, 74 (3-4) : 557 - 568
  • [10] Wang Y. Y., 2016, PREPRINT