Ag nanoparticles decorated MnO2/reduced graphene oxide as advanced electrode materials for supercapacitors

被引:124
|
作者
Ma, Lianbo [1 ]
Shen, Xiaoping [1 ,3 ]
Ji, Zhenyuan [1 ]
Zhu, Guoxing [1 ]
Zhou, Hu [2 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Peoples R China
[3] Nanjing Univ, State Key Lab Coordinat Chem, Nanjing 210093, Jiangsu, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Silver; Manganese dioxide; Graphene; Nanocomposite; Supercapacitor; ELECTROCHEMICAL CAPACITORS; SILVER NANOPARTICLES; RAMAN-SPECTROSCOPY; NANOSHEETS; CARBON; COMPOSITES; FACILE; PERFORMANCE; HYBRID; NANOSTRUCTURES;
D O I
10.1016/j.cej.2014.04.093
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A ternary nanocomposite of Ag/MnO2/RGO, in which reduced graphene oxide (RGO) sheets are decorated with Ag and MnO2 nanoparticles, is synthesized by in situ growth of MnO2 nanoparticles on graphene oxide (GO) sheets, following by co-reduction of Ag+ and GO. The in situ formed Ag and MnO2 nanoparticles with sizes of several nanometers are homogeneously distributed on the surface of RGO sheets. The composites as electrode materials for supercapacitors are investigated. It is found that the Ag/MnO2/RGO nanocomposites exhibit excellent capacitive performance with a specific capacitance as high as 467.5 F g(-1) at the scan rate of 5 mV s(-1), which is much higher than that of MnO2/RGO nanocomposites (293.2 F g-1). Moreover, the specific capacitance of Ag/MnO2/RGO does not show any obvious degeneration after 1000 cycles at the scan rate of 80 mV s(-1), indicating that the Ag/MnO2/RGO composites possess an excellent cycle life. The greatly enhanced capacitive performance of the Ag/MnO2/RGO nanocomposites is mainly attributed to the introduction of Ag nanoparticles, which can increase the electrical conductivities of the nanocomposites, and promote the electron transfer between the active components. This study suggests that graphene-based ternary nanocomposites are a promising class of electrode materials for high performance energy storage applications. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 103
页数:9
相关论文
共 50 条
  • [1] Self-assembled MnO2/Reduced Graphene Oxide Hybrid Fibers as Electrode Materials for Supercapacitors
    Zhang, Mei
    Jia, Yunming
    Li, Hongwei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (10): : 9749 - 9758
  • [2] MnO2 for the Electrode Materials of Supercapacitors
    Zhang, Yuanjian
    Xue, Dongfeng
    ENERGY AND ENVIRONMENT FOCUS, 2012, 1 (01) : 4 - 18
  • [3] MnO2/reduced graphene oxide composite as high-performance electrode for flexible supercapacitors
    Ye, Kai-Hang
    Liu, Zhao-Qing
    Xu, Chang-Wei
    Li, Nan
    Chen, Yi-Bo
    Su, Yu-Zhi
    INORGANIC CHEMISTRY COMMUNICATIONS, 2013, 30 : 1 - 4
  • [4] Synthesis of honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites as electrode materials for supercapacitors
    Xiong, Yachao
    Zhou, Min
    Chen, Hao
    Feng, Lei
    Wang, Zhao
    Yan, Xinzhu
    Guan, Shiyou
    APPLIED SURFACE SCIENCE, 2015, 357 : 1024 - 1030
  • [5] MnO2 Nanoflowers Deposited on Graphene Paper as Electrode Materials for Supercapacitors
    Sadak, Omer
    Wang, Weizheng
    Guan, Jiehao
    Sundramoorthy, Ashok K.
    Gunasekaran, Sundaram
    ACS APPLIED NANO MATERIALS, 2019, 2 (07): : 4386 - 4394
  • [6] Hydroiodic Acid Reduced Graphene Hybrid with δ-MnO2 for Electrode Material in Supercapacitors
    Peng, Xiaoqiang
    An, Junwei
    Xu, Shengming
    Chen, Weiliang
    Xu, Zhenghe
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2016, 5 (06) : M51 - M57
  • [7] Hierarchical heterostructures of Ag nanoparticles decorated MnO2 nanowires as promising electrodes for supercapacitors
    Xia, Hui
    Hong, Caiyun
    Shi, Xiaoqin
    Li, Bo
    Yuan, Guoliang
    Yao, Qiaofeng
    Xie, Jianping
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (03) : 1216 - 1221
  • [8] MnO2 grown in situ on graphene@CNTs as electrode materials for supercapacitors
    Chen, Junjiao
    Huang, Ying
    Zhang, Xiang
    Chen, Xuefang
    Li, Chao
    CERAMICS INTERNATIONAL, 2015, 41 (10) : 12680 - 12685
  • [9] Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors
    Mondal, Anjon Kumar
    Wang, Bei
    Su, Dawei
    Wang, Ying
    Chen, Shuangqiang
    Zhang, Xiaogang
    Wang, Guoxiu
    MATERIALS CHEMISTRY AND PHYSICS, 2014, 143 (02) : 740 - 746
  • [10] Construction of hierarchical holey graphene/MnO2 composites as potential electrode materials for supercapacitors
    Chai, Yaqiong
    Li, Zhangpeng
    Wang, Jinqing
    Mo, Zunli
    Yang, Shengrong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 775 : 1206 - 1212