High permittivity BaTiO3 and BaTiO3-polymer nanocomposites enabled by cold sintering with a new transient chemistry: Ba(OH)2•8H2O

被引:62
作者
Sada, Takao [1 ,2 ]
Tsuji, Kosuke [2 ]
Ndayishimiye, Arnaud [2 ]
Fan, Zhongming [2 ]
Fujioka, Yoshihiro [1 ]
Randall, Clive A. [2 ]
机构
[1] KYOCERA Corp, Monozukuri R&D Lab, Kirishima, Kagoshima 8994312, Japan
[2] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
关键词
Cold sintering; BaTiO3; Ceramic-polymer composite; Ceramic capacitor; MULTILAYER CERAMIC CAPACITORS; PRESSURE SOLUTION CREEP; DIELECTRIC-PROPERTIES; RARE-EARTH; RESISTIVITY; STABILITY; HEAT;
D O I
10.1016/j.jeurceramsoc.2020.07.070
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cold sintering process (CSP) offers a promising strategy for the fabrication of innovative and advanced high permittivity dielectric nanocomposite materials. Here, we introduce Ba(OH)(2)center dot 8H(2)O hydrated flux as a new transient chemistry that enables the densification of BaTiO3 in a single step at a temperature as low as 150 degrees C. This remarkably low temperature is near its Curie transition of 125 degrees C, associated with a displacive phase transition. The cold sintered BaTiO3 shows a relative density of 95 % and a room temperature relative permittivity over 1000. This new hydrated flux permits the fabrication of a unique dense BaTiO3-polymer nanocomposite with a high volume fraction of ceramics ((1-x) BaTiO3 - x PTFE, with x = 0.05). The composite exhibits a relative permittivity of approximately 800, at least an order of magnitude higher than previous reports on polymer composites with BaTiO3 nanoparticle fillers that are typically well below 100. Unique high permittivity dielectric nanocomposites with enhanced resistivities can now be designed using polymers to engineer grain boundaries and CSP as a processing method opening up new possibilities in dielectric materials design.
引用
收藏
页码:409 / 417
页数:9
相关论文
共 49 条
  • [1] Nanocomposites of ferroelectric polymers with surface-hydroxylated BaTiO3 nanoparticles for energy storage applications
    Almadhoun, Mahmoud N.
    Bhansali, Unnat S.
    Alshareef, H. N.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (22) : 11196 - 11200
  • [2] FIRST REPORT ON SINTERING DIAGRAMS
    ASHBY, MF
    [J]. ACTA METALLURGICA, 1974, 22 (03): : 275 - 289
  • [3] Ferroelectrics: The role of ceramic science and engineering
    Bell, Andrew J.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (07) : 1307 - 1317
  • [4] Geologically-inspired strong bulk ceramics made with water at room temperature
    Bouville, Florian
    Studart, Andre R.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [5] SOLID-STATE AND SURFACE SPECTROSCOPIC CHARACTERIZATION OF BATIO3 FINE POWDERS
    BUSCA, G
    BUSCAGLIA, V
    LEONI, M
    NANNI, P
    [J]. CHEMISTRY OF MATERIALS, 1994, 6 (07) : 955 - 961
  • [6] Incorporation of Er3+ into BaTiO3
    Buscaglia, MT
    Viviani, M
    Buscaglia, V
    Bottino, C
    Nanni, P
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2002, 85 (06) : 1569 - 1575
  • [7] Size and scaling effects in barium titanate. An overview
    Buscaglia, Vincenzo
    Randall, Clive A.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (11) : 3744 - 3758
  • [8] A mini-review on anion exchange membranes for fuel cell applications: Stability issue and addressing strategies
    Cheng, Jie
    He, Gaohong
    Zhang, Fengxiang
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (23) : 7348 - 7360
  • [9] Relaxing with relaxors: a review of relaxor ferroelectrics
    Cowley, R. A.
    Gvasaliya, S. N.
    Lushnikov, S. G.
    Roessli, B.
    Rotaru, G. M.
    [J]. ADVANCES IN PHYSICS, 2011, 60 (02) : 229 - 327
  • [10] De Jonghe L.C., 2003, Handbook of Advanced Ceramics, P187, DOI DOI 10.1016/B978-012654640-8/50006-7