Kac-Moody Lie Algebras Graded by Kac-Moody Root Systems

被引:0
作者
Ben Messaoud, Hechmi [1 ]
Rousseau, Guy [2 ]
机构
[1] Univ Monastir, Fac Sci, Dept Math, Monastir 5019, Tunisia
[2] Univ Lorraine, CNRS, UMR 7502, Inst Elie Cartan Lorraine, F-54506 Vandoeuvre Les Nancy, France
关键词
Kac-Moody algebra; C admissible pair; gradation; INTERSECTION MATRIX ALGEBRAS; SUBALGEBRAS; FORMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We look to gradations of Kac-Moody Lie algebras by Kac-Moody root systems with finite dimensional weight spaces. We extend, to general Kac-Moody Lie algebras, the notion of C - admissible pair as introduced by H. Rubenthaler and J. Nervi for semi-simple and afiEme Lie algebras. If g is a Kac-Moody Lie algebra (with Dynkin diagram indexed by I) and (I, J) is such a C - admissible pair, we construct a C - admissible subalgebra g(J), which is a Kac-Moody Lie algebra of the same type as g, and whose root system Sigma grades finitely the Lie algebra g(rho). For an admissible quotient rho : I -> (I) over bar we build also a Kac-Moody subalgebra le which grades finitely the Lie algebra 9. If g is affine or hyperbolic, we prove that the classification of the gradations of g is equivalent to those of the C - admissible pairs and of the admissible quotients. For general Kac-Moody Lie algebras of indefinite type, the situation may be more complicated; it is (less precisely) described by the concept of generalized C - admissible pairs.
引用
收藏
页码:321 / 350
页数:30
相关论文
共 22 条
[1]   Central extensions of Lie algebras graded by finite root systems [J].
Allison, B ;
Benkart, G ;
Gao, Y .
MATHEMATISCHE ANNALEN, 2000, 316 (03) :499-527
[2]  
[Anonymous], 2002, ASTERISQUE
[3]   QUASI-UNFOLDED FORMS OF KAC-MOODY ALGEBRAS - CLASSIFICATION AND RELATIVE ROOTS [J].
BACKVALENTE, V ;
BARDYPANSE, N ;
BENMESSAOUD, H ;
ROUSSEAU, G .
JOURNAL OF ALGEBRA, 1995, 171 (01) :43-96
[4]  
Bardy N, 1999, NAGOYA MATH J, V156, P1
[5]  
BARDYPANSE N, 1996, MEMOIRE SMF, V65
[6]  
Ben Messaoud H, IMAGINARY GRAD UNPUB
[7]   Almost split real forms for hyperbolic Kac-Moody Lie algebras [J].
Ben Messaoud, Hechmi .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (44) :13659-13690
[8]   Lie algebras graded by finite root systems and intersection matrix algebras [J].
Benkart, G ;
Zelmanov, E .
INVENTIONES MATHEMATICAE, 1996, 126 (01) :1-45
[9]   LIE-ALGEBRAS GRADED BY FINITE ROOT SYSTEMS AND THE INTERSECTION MATRIX ALGEBRAS OF SLODOWY [J].
BERMAN, S ;
MOODY, RV .
INVENTIONES MATHEMATICAE, 1992, 108 (02) :323-347
[10]   GENERALIZED KAC-MOODY ALGEBRAS [J].
BORCHERDS, R .
JOURNAL OF ALGEBRA, 1988, 115 (02) :501-512