α-Domination

被引:32
作者
Dunbar, JE [1 ]
Hoffman, DG
Laskar, RC
Markus, LR
机构
[1] Converse Coll, Dept Math, Spartanburg, SC 29302 USA
[2] Auburn Univ, Dept Discrete & Stat Sci, Auburn, AL 36849 USA
[3] Clemson Univ, Dept Math, Clemson, SC 29634 USA
[4] Furman Univ, Dept Math, Greenville, SC 29613 USA
关键词
D O I
10.1016/S0012-365X(99)00131-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V,E) be any graph with n vertices, m edges and no isolated vertices. For some alpha with 0 < alpha less than or equal to 1 and a set S subset of or equal to V, we say that S is alpha-dominating if for all nu epsilon V - S, \ N(nu)boolean AND S \greater than or equal to alpha \ N(nu)\. The size of a smallest such S is called the alpha-domination number and is denoted by gamma(x)(G). In this paper, we introduce alpha-domination, discuss bounds for gamma(1/2)(G) for the King's graph, and give bounds for (gamma alpha)(G) for a general alpha, 0 < alpha less than or equal to 1. Furthermore, we show that the problem of deciding whether gamma(alpha)(G) less than or equal to k is NP-complete. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:11 / 26
页数:16
相关论文
共 15 条
[1]  
[Anonymous], 1978, Canad. Math. Bull.
[2]  
[Anonymous], 1995, GRAPH THEORY COMBINA
[3]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[4]  
CHARTRAND G, 1996, GRAPHS DIGRAPHS
[5]   Gallai-type theorems and domination parameters [J].
Domke, GS ;
Dunbar, JE ;
Markus, LR .
DISCRETE MATHEMATICS, 1997, 167 :237-248
[6]  
Fink J., 1985, GRAPH THEORY APPL AL, P283
[7]  
Gallai T., 1959, ANN U SCI BUDAP, V2, P133
[8]  
HARTNELL B, 1995, CZECH MATH J, V45, P221
[9]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT
[10]  
LIATTI M, 1995, COMMUNICATION