Physical realization of the Glauber quantum oscillator

被引:30
作者
Gentilini, Silvia [1 ,2 ]
Braidotti, Maria Chiara [1 ,3 ]
Marcucci, Giulia [2 ]
DelRe, Eugenio [1 ,2 ]
Conti, Claudio [1 ,2 ]
机构
[1] CNR, Inst Complex Syst, I-00185 Rome, Italy
[2] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
[3] Univ Aquila, Dept Phys & Chem Sci, I-67010 Laquila, Italy
基金
欧洲研究理事会;
关键词
SHOCK-WAVES; STATES;
D O I
10.1038/srep15816
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
More than thirty years ago Glauber suggested that the link between the reversible microscopic and the irreversible macroscopic world can be formulated in physical terms through an inverted harmonic oscillator describing quantum amplifiers. Further theoretical studies have shown that the paradigm for irreversibility is indeed the reversed harmonic oscillator. As outlined by Glauber, providing experimental evidence of these idealized physical systems could open the way to a variety of fundamental studies, for example to simulate irreversible quantum dynamics and explain the arrow of time. However, supporting experimental evidence of reversed quantized oscillators is lacking. We report the direct observation of exploding n = 0 and n = 2 discrete states and Gamma(0) and Gamma(2) quantized decay rates of a reversed harmonic oscillator generated by an optical photothermal nonlinearity. Our results give experimental validation to the main prediction of irreversible quantum mechanics, that is, the existence of states with quantized decay rates. Our results also provide a novel perspective to optical shock-waves, potentially useful for applications as lasers, optical amplifiers, white-light and X-ray generation.
引用
收藏
页数:6
相关论文
共 25 条
[1]   INTRINSIC IRREVERSIBILITY AND INTEGRABILITY OF DYNAMICS [J].
ANTONIOU, IE ;
PRIGOGINE, I .
PHYSICA A, 1993, 192 (03) :443-464
[2]   Collapse arrest and soliton stabilization in nonlocal nonlinear media [J].
Bang, O ;
Krolikowski, W ;
Wyller, J ;
Rasmussen, JJ .
PHYSICAL REVIEW E, 2002, 66 (04) :5
[3]   Dispersive shock waves with nonlocal nonlinearity [J].
Barsi, Christopher ;
Wan, Wenjie ;
Sun, Can ;
Fleischer, Jason W. .
OPTICS LETTERS, 2007, 32 (20) :2930-2932
[4]   Time-asymmetric quantum physics [J].
Bohm, A .
PHYSICAL REVIEW A, 1999, 60 (02) :861-876
[5]  
BOHM A, 1981, J MATH PHYS, V22, P2813, DOI 10.1063/1.524871
[6]  
Bohm A., 1998, LECT NOTE PHYS, V504-504, P179, DOI [10.1007/BFb0106783, DOI 10.1007/BFB0106783]
[7]   Resonant states and classical damping [J].
Chruscinski, D .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2002, 9 (03) :207-221
[8]   Physical and mathematical aspects of Gamow states [J].
Civitarese, O ;
Gadella, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 396 (02) :41-113
[9]   A pedestrian introduction to Gamow vectors [J].
de la Madrid, R ;
Gadella, M .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (06) :626-638
[10]   Time-reversal focusing of an expanding soliton gas in disordered replicas [J].
Fratalocchi, A. ;
Armaroli, A. ;
Trillo, S. .
PHYSICAL REVIEW A, 2011, 83 (05)