Inverse scattering transform for the focusing nonlinear Schrodinger equation with nonzero boundary conditions

被引:204
作者
Biondini, Gino [1 ]
Kovacic, Gregor [2 ]
机构
[1] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[2] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
MODULATION INSTABILITY; WAVE-TRAINS; PROPAGATION; EIGENVALUES; WATER;
D O I
10.1063/1.4868483
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The inverse scattering transform for the focusing nonlinear Schrodinger equation with non-zero boundary conditions at infinity is presented, including the determination of the analyticity of the scattering eigenfunctions, the introduction of the appropriate Riemann surface and uniformization variable, the symmetries, discrete spectrum, asymptotics, trace formulae and the so-called theta condition, and the formulation of the inverse problem in terms of a Riemann-Hilbert problem. In addition, the general behavior of the soliton solutions is discussed, as well as the reductions to all special cases previously discussed in the literature. (c) 2014 AIP Publishing LLC.
引用
收藏
页数:22
相关论文
共 46 条
[1]  
Ablowitz M., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[2]  
Ablowitz M.J., 2003, Complex Variables
[3]   ON HOMOCLINIC STRUCTURE AND NUMERICALLY INDUCED CHAOS FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
ABLOWITZ, MJ ;
HERBST, BM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (02) :339-351
[4]   COHERENT PULSE-PROPAGATION, A DISPERSIVE, IRREVERSIBLE PHENOMENON [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (11) :1852-1858
[5]  
Ablowitz MJ., 2003, London Mathematical Society Lecture Note Series, V302
[6]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[7]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[8]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[9]   SCATTERING AND INVERSE SCATTERING FOR 1ST ORDER SYSTEMS [J].
BEALS, R ;
COIFMAN, RR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (01) :39-90
[10]   Bright solitons on a cw background [J].
Belanger, N ;
Belanger, PA .
OPTICS COMMUNICATIONS, 1996, 124 (3-4) :301-308