Global stability in the 2D Ricker equation

被引:21
作者
Ryals, Brian [1 ]
Sacker, Robert J. [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
global stability; proper maps; 2D competition model; 39A30; 92D25; 92D40; MODELS; MAPS;
D O I
10.1080/10236198.2015.1065825
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We improve a previous result for the 2D Ricker equation by reducing an infinite number of topological conditions to a finite number. We also give sufficient conditions in terms of the parameters where many of these topological conditions are satisfied. We also discuss the various pathologies that occur for other parameter choices.
引用
收藏
页码:1068 / 1081
页数:14
相关论文
共 17 条
[1]   Local stability implies global stability for the 2-dimensional Ricker map [J].
Bartha, Ferenc A. ;
Garab, Abel ;
Krisztin, Tibor .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (12) :2043-2078
[2]  
Cabral Balreira E., 2014, DISCRETE CONTIN DY B, V19
[3]  
CULL P, 1988, B MATH BIOL, V50, P67
[4]  
Devaney RL., 2003, INTRO CHAOTIC DYNAMI
[5]  
Elaydi Saber, 2005, An Introduction to Difference Equations, Vthird
[6]  
Elaydi SN, 2008, DISCRETE CHAOS
[7]   NOTE ON PROPER MAPS [J].
HO, CW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 51 (01) :237-241
[8]   Simple mathematical models for interacting wild and transgenic mosquito populations [J].
Li, J .
MATHEMATICAL BIOSCIENCES, 2004, 189 (01) :39-59
[9]  
Liz E, 2007, DISCRETE CONT DYN-B, V7, P191
[10]  
Mahaffy J., 2009, CALCULUS MODELING AP, V1