Silicon Quantum Dots for Biological Applications

被引:156
作者
Chinnathambi, Shanmugavel [1 ]
Chen, Song [2 ,3 ]
Ganesan, Singaravelu [1 ]
Hanagata, Nobutaka [4 ,5 ]
机构
[1] Anna Univ, Dept Med Phys, Madras 600025, Tamil Nadu, India
[2] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[3] Natl Inst Mat Sci, Biomat Unit, Tsukuba, Ibaraki 3050047, Japan
[4] Natl Inst Mat Sci, Nanotechnol Innovat Stn, Tsukuba, Ibaraki 3050047, Japan
[5] Hokkaido Univ, Grad Sch Life Sci, Kita Ku, Sapporo, Hokkaido 0600812, Japan
基金
日本学术振兴会;
关键词
bioimaging; drug delivery; quantum dots; silicon; HIGHLY-LUMINESCENT; PLASMA SYNTHESIS; DEPENDENT PHOTOLUMINESCENCE; SURFACE FUNCTIONALIZATION; NANOPARTICLES SYNTHESIS; LIVE CELLS; IN-VITRO; NANOCRYSTALS; SI; FLUORESCENT;
D O I
10.1002/adhm.201300157
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Semiconductor nanoparticles (or quantum dots, QDs) exhibit unique optical and electronic properties such as size-controlled fluorescence, high quantum yields, and stability against photobleaching. These properties allow QDs to be used as optical labels for multiplexed imaging and in drug delivery detection systems. Luminescent silicon QDs and surface-modified silicon QDs have also been developed as potential minimally toxic fluorescent probes for bioapplications. Silicon, a well-known power electronic semiconductor material, is considered an extremely biocompatible material, in particular with respect to blood. This review article summarizes existing knowledge related to and recent research progress made in the methods for synthesizing silicon QDs, as well as their optical properties and surface-modification processes. In addition, drug delivery systems and in vitro and in vivo imaging applications that use silicon QDs are also discussed.
引用
收藏
页码:10 / 29
页数:20
相关论文
共 103 条
[41]   Highly luminescent silicon nanocrystals with discrete optical transitions [J].
Holmes, JD ;
Ziegler, KJ ;
Doty, RC ;
Pell, LE ;
Johnston, KP ;
Korgel, BA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (16) :3743-3748
[42]   PEGylated Phospholipid Micelle-Encapsulated Near-Infrared PbS Quantum Dots for in vitro and in vivo Bioimaging [J].
Hu, Rui ;
Law, Wing-Cheung ;
Lin, Guimiao ;
Ye, Ling ;
Liu, Jianwei ;
Liu, Jing ;
Reynolds, Jessica L. ;
Yong, Ken-Tye .
THERANOSTICS, 2012, 2 (07) :723-733
[43]   Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilylation followed by oxidation [J].
Hua, FJ ;
Erogbogbo, F ;
Swihart, MT ;
Ruckenstein, E .
LANGMUIR, 2006, 22 (09) :4363-4370
[44]   Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation [J].
Hua, FJ ;
Swihart, MT ;
Ruckenstein, E .
LANGMUIR, 2005, 21 (13) :6054-6062
[45]  
Inceoglu O. Y., 2012, NANOTECHNOLOGY, V23
[46]   Bioconjugated silicon quantum dots from one-step green synthesis [J].
Intartaglia, Romuald ;
Barchanski, Annette ;
Bagga, Komal ;
Genovese, Alessandro ;
Das, Gobind ;
Wagener, Philipp ;
Di Fabrizio, Enzo ;
Diaspro, Alberto ;
Brandi, Fernando ;
Barcikowski, Stephan .
NANOSCALE, 2012, 4 (04) :1271-1274
[47]   Potentials and pitfalls of fluorescent quantum dots for biological imaging [J].
Jaiswal, JK ;
Simon, SM .
TRENDS IN CELL BIOLOGY, 2004, 14 (09) :497-504
[48]   Biological applications of quantum dots [J].
Jamieson, Timothy ;
Bakhshi, Raheleh ;
Petrova, Daniela ;
Pocock, Rachael ;
Imani, Mo ;
Seifalian, Alexander M. .
BIOMATERIALS, 2007, 28 (31) :4717-4732
[49]   Surface Hydride Composition of Plasma-Synthesized Si Nanoparticles [J].
Jariwala, Bhavin N. ;
Kramer, Nicolaas J. ;
Petcu, M. Cristina ;
Bobela, David C. ;
van de Sanden, M. C. M. ;
Stradins, Paul ;
Ciobanu, Cristian V. ;
Agarwal, Sumit .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (42) :20375-20379
[50]   Silicon nanocrystals with ensemble quantum yields exceeding 60% [J].
Jurbergs, David ;
Rogojina, Elena ;
Mangolini, Lorenzo ;
Kortshagen, Uwe .
APPLIED PHYSICS LETTERS, 2006, 88 (23)