A gradient enhanced ll-minimization for sparse approximation of polynomial chaos expansions

被引:31
作者
Guo, Ling [1 ]
Narayan, Akil [2 ,3 ]
Zhou, Tao [4 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[4] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, AMSS, LSEC, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Polynomial chaos expansions; Uncertainty quantification; Compressive sampling; Gradient-enhanced l(1)-minimization; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; L(1) MINIMIZATION; REPRESENTATIONS; RECOVERY; DOMAIN;
D O I
10.1016/j.jcp.2018.04.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate a gradient enhanced l(1)-minimization for constructing sparse polynomial chaos expansions. In addition to function evaluations, measurements of the function gradient is also included to accelerate the identification of expansion coefficients. By designing appropriate preconditioners to the measurement matrix, we show gradient enhanced l(1) minimization leads to stable and accurate coefficient recovery. The framework for designing preconditioners is quite general and it applies to recover of functions whose domain is bounded or unbounded. Comparisons between the gradient enhanced approach and the standard l(1)-minimization are also presented and numerical examples suggest that the inclusion of derivative information can guarantee sparse recovery at a reduced computational cost. (c) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 53 条
[11]   Uncertainty principles and ideal atomic decomposition [J].
Donoho, DL ;
Huo, XM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :2845-2862
[12]   A non-adapted sparse approximation of PDEs with stochastic inputs [J].
Doostan, Alireza ;
Owhadi, Houman .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) :3015-3034
[13]  
Faires, 2004, Numerical analysis
[14]   On sparse representations in arbitrary redundant bases [J].
Fuchs, JJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (06) :1341-1344
[15]  
Gabor Szego, 1959, AM MATH SOC C PUBLIC, V23
[16]   Sparse grid collocation schemes for stochastic natural convection problems [J].
Ganapathysubramanian, Baskar ;
Zabaras, Nicholas .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (01) :652-685
[17]  
Ghanem R., 1991, STOCHASTIC FINITE EL, VVolume 1, P1, DOI [10.1007/978-1-4612-3094-6, DOI 10.1007/978-1-4612-3094-6]
[18]   Sparse representations in unions of bases [J].
Gribonval, R ;
Nielsen, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (12) :3320-3325
[19]  
Griewank A., 2003, Acta Numerica, V12, P321, DOI 10.1017/S0962492902000132
[20]   WEIGHTED APPROXIMATE FEKETE POINTS: SAMPLING FOR LEAST-SQUARES POLYNOMIAL APPROXIMATION [J].
Guo, Ling ;
Narayan, Akil ;
Yan, Liang ;
Zhou, Tao .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01) :A366-A387