A gradient enhanced ll-minimization for sparse approximation of polynomial chaos expansions

被引:29
作者
Guo, Ling [1 ]
Narayan, Akil [2 ,3 ]
Zhou, Tao [4 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[4] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, AMSS, LSEC, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Polynomial chaos expansions; Uncertainty quantification; Compressive sampling; Gradient-enhanced l(1)-minimization; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; L(1) MINIMIZATION; REPRESENTATIONS; RECOVERY; DOMAIN;
D O I
10.1016/j.jcp.2018.04.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate a gradient enhanced l(1)-minimization for constructing sparse polynomial chaos expansions. In addition to function evaluations, measurements of the function gradient is also included to accelerate the identification of expansion coefficients. By designing appropriate preconditioners to the measurement matrix, we show gradient enhanced l(1) minimization leads to stable and accurate coefficient recovery. The framework for designing preconditioners is quite general and it applies to recover of functions whose domain is bounded or unbounded. Comparisons between the gradient enhanced approach and the standard l(1)-minimization are also presented and numerical examples suggest that the inclusion of derivative information can guarantee sparse recovery at a reduced computational cost. (c) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 53 条
[1]  
Adcock B, 2017, CONSTR APPROX, V45, P345, DOI 10.1007/s00365-017-9369-3
[2]   A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties [J].
Agarwal, Nitin ;
Aluru, N. R. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7662-7688
[3]   The estimation of functional uncertainty using polynomial chaos and adjoint equations [J].
Alekseev, A. K. ;
Navon, I. M. ;
Zelentsov, M. E. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (03) :328-341
[4]  
[Anonymous], 2009, 50 AIAAASMEASCEAHSAS
[5]   A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM REVIEW, 2010, 52 (02) :317-355
[6]   A SPARSE COMPOSITE COLLOCATION FINITE ELEMENT METHOD FOR ELLIPTIC SPDEs [J].
Bieri, Marcel .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) :2277-2301
[7]   Stable Recovery of Sparse Signals and an Oracle Inequality [J].
Cai, Tony Tony ;
Wang, Lie ;
Xu, Guangwu .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (07) :3516-3522
[8]   A Probabilistic and RIPless Theory of Compressed Sensing [J].
Candes, Emmanuel J. ;
Plan, Yaniv .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (11) :7235-7254
[9]   DISCRETE LEAST SQUARES POLYNOMIAL APPROXIMATION WITH RANDOM EVALUATIONS - APPLICATION TO PARAMETRIC AND STOCHASTIC ELLIPTIC PDES [J].
Chkifa, Abdellah ;
Cohen, Albert ;
Migliorati, Giovanni ;
Nobile, Fabio ;
Tempone, Raul .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (03) :815-837
[10]  
de Baar JH., 2012, Proc. of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), P10