3D printing of biomimetic vasculature for tissue regeneration

被引:94
作者
Lei, Dong [1 ,2 ]
Yang, Yang [3 ]
Liu, Zenghe [1 ,2 ]
Yang, Binqian [2 ]
Gong, Wenhui [4 ]
Chen, Shuo [2 ]
Wang, Shaofei [2 ]
Sun, Lijie [2 ]
Song, Benyan [2 ]
Xuan, Huixia [2 ]
Mo, Xiumei [1 ]
Sun, Binbin [1 ]
Li, Sen [3 ]
Yang, Qi [3 ]
Huang, Shixing [3 ]
Chen, Shiyan [2 ]
Ma, Yiding [2 ]
Liu, Wenguang [5 ]
He, Chuanglong [1 ]
Zhu, Bo [6 ]
Jeffries, Eric M. [7 ]
Qing, Feng-Ling [1 ]
Ye, Xiaofeng [3 ]
Zhao, Qiang [3 ]
You, Zhengwei [1 ,2 ]
机构
[1] Donghua Univ, Coll Chem Chem Engn & Biotechnol, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[2] Donghua Univ, Coll Mat Sci & Engn, Int Joint Lab Adv Fiber & Low Dimens Mat, Shanghai 201620, Peoples R China
[3] Shanghai Jiao Tong Univ, Ruijin Hosp, Dept Cardiac Surg, Sch Med, Shanghai 200025, Peoples R China
[4] Anhui Med Univ, Dept Cardiovasc Surg, Affiliated Hosp 1, Hefei 230022, Anhui, Peoples R China
[5] Tianjin Univ, Sch Mat Sci & Engn, Tianjin Key Lab Composite & Funct Mat, Tianjin 300350, Peoples R China
[6] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[7] 6120 Fillmore Pl,Apt 2 West, New York, NJ 07093 USA
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
VASCULARIZATION; ANGIOGENESIS; CONSTRUCTS; NETWORKS; BIOMATERIALS; STRATEGIES; SCAFFOLD;
D O I
10.1039/c9mh00174c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One of the pivotal factors that limits the clinical applications of tissue engineering is the inability to create complex three-dimensional (3D) tissues due to the lack of a long-range mass transport capability. Here we present a simple versatile strategy to fabricate perfusable and permeable hierarchical microchannel-networks (PHMs) via the combination of one-pot 3D printed sacrificial caramel templates and polymer coating with integrated phase separation. The patterned PHMs possess a biomimetic three level vascular structure including a custom-made scalable 3D framework, interconnected microchannels and permeable walls with controllable micropores. The fabrication process can be adapted to various polymers and integrated with diverse matrices including hydrogels, particle leached porous scaffolds, electrospun nanofibers, and bacterial cellulose. We demonstrated the power of PHMs to facilitate mass exchange in tissue engineering constructs by showing that the PHMs could maintain the metabolic functions of heart cells in vitro, facilitate in vivo angiogenesis and tissue integration, and efficiently treat myocardial infarction.
引用
收藏
页码:1197 / 1206
页数:10
相关论文
共 51 条
[1]   Engineering Complex Tissues [J].
Atala, Anthony ;
Kasper, F. Kurtis ;
Mikos, Antonios G. .
SCIENCE TRANSLATIONAL MEDICINE, 2012, 4 (160)
[2]   Building Vascular Networks [J].
Bae, Hojae ;
Puranik, Amey S. ;
Gauvin, Robert ;
Edalat, Faramarz ;
Carrillo-Conde, Brenda ;
Peppas, Nicholas A. ;
Khademhosseini, Ali .
SCIENCE TRANSLATIONAL MEDICINE, 2012, 4 (160)
[3]   Endothelialization approaches for viable engineered tissues [J].
Baiguera, Silvia ;
Ribatti, Domenico .
ANGIOGENESIS, 2013, 16 (01) :1-14
[4]   Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients [J].
Baker, Brendon M. ;
Trappmann, Britta ;
Stapleton, Sarah C. ;
Toro, Esteban ;
Chen, Christopher S. .
LAB ON A CHIP, 2013, 13 (16) :3246-3252
[5]   In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs [J].
Bez, Maxim ;
Sheyn, Dmitriy ;
Tawackoli, Wafa ;
Avalos, Pablo ;
Shapiro, Galina ;
Giaconi, Joseph C. ;
Da, Xiaoyu ;
Ben David, Shiran ;
Gavrity, Jayne ;
Awad, Hani A. ;
Bae, Hyun W. ;
Ley, Eric J. ;
Kremen, Thomas J. ;
Gazit, Zulma ;
Ferrara, Katherine W. ;
Pelled, Gadi ;
Gazit, Dan .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (390)
[6]   The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow [J].
Blinder, Pablo ;
Tsai, Philbert S. ;
Kaufhold, John P. ;
Knutsen, Per M. ;
Suhl, Harry ;
Kleinfeld, David .
NATURE NEUROSCIENCE, 2013, 16 (07) :889-U150
[7]   Nanotechnological strategies for engineering complex tissues [J].
Dvir, Tal ;
Timko, Brian P. ;
Kohane, Daniel S. ;
Langer, Robert .
NATURE NANOTECHNOLOGY, 2011, 6 (01) :13-22
[8]   Accordion-like honeycombs for tissue engineering of cardiac anisotropy [J].
Engelmayr, George C., Jr. ;
Cheng, Mingyu ;
Bettinger, Christopher J. ;
Borenstein, Jeffrey T. ;
Langer, Robert ;
Freed, Lisa E. .
NATURE MATERIALS, 2008, 7 (12) :1003-1010
[9]   3D Printing of Lotus Root-Like Biomimetic Materials for Cell Delivery and Tissue Regeneration [J].
Feng, Chun ;
Zhang, Wenjie ;
Deng, Cuijun ;
Li, Guanglong ;
Chang, Jiang ;
Zhang, Zhiyuan ;
Jiang, Xinquan ;
Wu, Chengtie .
ADVANCED SCIENCE, 2017, 4 (12)
[10]   Advanced Material Strategies for Tissue Engineering Scaffolds [J].
Freed, Lisa E. ;
Engelmayr, George C., Jr. ;
Borenstein, Jeffrey T. ;
Moutos, Franklin T. ;
Guilak, Forshid .
ADVANCED MATERIALS, 2009, 21 (32-33) :3410-3418