Spectral problems for non-linear Sturm-Liouville equations with eigenparameter dependent boundary conditions

被引:21
|
作者
Binding, PA [1 ]
Browne, PJ
Watson, BA
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
[3] Univ Witwatersrand, Dept Math, ZA-2050 Wits, South Africa
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2000年 / 52卷 / 02期
关键词
D O I
10.4153/CJM-2000-011-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nonlinear Sturm-Liouville equation -(py')' + qy = lambda(1 - f)ry on [0, 1] is considered subject to the boundary conditions (a(j)lambda + b(j))y(j) = (c(j)lambda + d(j))(py')(j), j=0,1. Here a(0) = 0 = c(0) and p, r > 0 and q are functions depending on the independent variable x alone, while f depends on x, y and y'. Results are given on existence and location of sets of (lambda, y) bifurcating from the linearized eigenvalues, and for which y has prescribed oscillation count, and on completeness of the y in an appropriate sense.
引用
收藏
页码:248 / 264
页数:17
相关论文
共 50 条