Parameterized k-Clustering: Tractability island

被引:4
作者
Fomin, Fedor V. [1 ]
Golovach, Petr A. [1 ]
Simonov, Kirill [1 ]
机构
[1] Univ Bergen, Dept Informat, Thormohlens Gate 55, N-5008 Bergen, Norway
关键词
Clustering; Parameterized complexity; k-means; k-median;
D O I
10.1016/j.jcss.2020.10.005
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In k-CLUSTERING we are given a multiset of n vectors X subset of Z(d) and a nonnegative number D, and we need to decide whether X can be partitioned into k clusters C-1, ... , C-k such that the cost Sigma(k)(i=1) min (ci is an element of Rd) Sigma(x is an element of ci)parallel to x-c(i)parallel to(p)(p) <= D where parallel to center dot parallel to p is the Lp-norm. For p = 2, k-CLUSTERING is k-MEANS. We study k-CLUSTERING from the perspective of parameterized complexity. The problem is known to be NP-hard for k = 2 and also for d = 2. It is a long-standing open question, whether the problem is fixed parameter tractable (FPT) for the combined parameter d +k. In this paper, we focus on the parameterization by D. We complement the known negative results by showing that for p = 0 and p = infinity, k-CLUSTERING is W[1]-hard when parameterized by D. Interestingly, we discover a tractability island of k-CLUSTERING: for every p is an element of (0, 1], k-CLUSTERING is solvable in time 2(O(D log D))(nd)(O(1)). (C) 2020 The Author(s). Published by Elsevier Inc.
引用
收藏
页码:50 / 74
页数:25
相关论文
共 34 条
[1]   Clustering for Metric and Nonmetric Distance Measures [J].
Ackermann, Marcel R. ;
Bloemer, Johannes ;
Sohler, Christian .
ACM TRANSACTIONS ON ALGORITHMS, 2010, 6 (04)
[2]   Approximating extent measures of points [J].
Agarwal, PK ;
Har-Peled, S ;
Varadarajan, KR .
JOURNAL OF THE ACM, 2004, 51 (04) :606-635
[3]   NP-hardness of Euclidean sum-of-squares clustering [J].
Aloise, Daniel ;
Deshpande, Amit ;
Hansen, Pierre ;
Popat, Preyas .
MACHINE LEARNING, 2009, 75 (02) :245-248
[4]   COLOR-CODING [J].
ALON, N ;
YUSTER, R ;
ZWICK, U .
JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY, 1995, 42 (04) :844-856
[5]  
Anagnostopoulos A., 2012, THEORY COMPUTING, V8, P597
[6]   FAST PROBABILISTIC ALGORITHMS FOR HAMILTONIAN CIRCUITS AND MATCHINGS [J].
ANGLUIN, D ;
VALIANT, LG .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1979, 18 (02) :155-193
[7]  
[Anonymous], 2004, P 36 ANN ACM S THEOR
[8]  
Boucher C., 2011, CORR
[9]   Consensus Patterns (Probably) Has no EPTAS [J].
Boucher, Christina ;
Lo, Christine ;
Lokshantov, Daniel .
ALGORITHMS - ESA 2015, 2015, 9294 :239-250
[10]   Randomized Dimensionality Reduction for k-Means Clustering [J].
Boutsidis, Christos ;
Zouzias, Anastasios ;
Mahoney, Michael W. ;
Drineas, Petros .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) :1045-1062