Geometric Manin's conjecture and rational curves

被引:22
作者
Lehmann, Brian [1 ]
Tanimoto, Sho [2 ,3 ]
机构
[1] Boston Coll, Dept Math, 1400 Commonwealth Ave, Chestnut Hill, MA 02467 USA
[2] Kumamoto Univ, Dept Math, Fac Sci, Kurokami 2-39-1, Kumamoto 8608555, Japan
[3] Kumamoto Univ, Prior Org Innovat & Excellence, Kumamoto, Japan
基金
美国国家科学基金会;
关键词
rational curves; Manin's conjecture; Fujita invariant; POINTS; VARIETIES; NUMBER; SPACES; IRREDUCIBILITY; HYPERSURFACES; FAMILIES; SURFACES;
D O I
10.1112/S0010437X19007103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a smooth projective Fano variety over the complex numbers. We study the moduli space of rational curves on X using the perspective of Manin's conjecture. In particular, we bound the dimension and number of components of spaces of rational curves on X. We propose a geometric Manin's conjecture predicting the growth rate of a counting function associated to the irreducible components of these moduli spaces.
引用
收藏
页码:833 / 862
页数:30
相关论文
共 50 条
[2]   THE NUMBER OF RATIONAL-POINTS OF BOUNDED HEIGHT OF ALGEBRAIC-VARIETIES [J].
BATYREV, VV ;
MANIN, YI .
MATHEMATISCHE ANNALEN, 1990, 286 (1-3) :27-43
[3]  
Batyrev VV, 1996, CR ACAD SCI I-MATH, V323, P41
[4]   Spaces of rational curves on complete intersections [J].
Beheshti, Roya ;
Kumar, N. Mohan .
COMPOSITIO MATHEMATICA, 2013, 149 (06) :1041-1060
[5]   Stacks of stable maps and Gromov-Witten invariants [J].
Behrend, K ;
Manin, Y .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) :1-60
[7]  
Birkar C., 2016, PREPRINT
[8]  
Boucksom S, 2013, J ALGEBRAIC GEOM, V22, P201
[9]  
Bourqui D., 2011, PREPRINT
[10]   Algebraic points, non-anticanonical heights and the Severi problem on toric varieties [J].
Bourqui, David .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 113 :474-514