Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction -: Ionic diversity in smooth muscle cells

被引:156
作者
Archer, SL
Wu, XC
Thébaud, B
Nsair, A
Bonnet, S
Tyrrell, B
McMurtry, MS
Hashimoto, K
Harry, G
Michelakis, ED
机构
[1] Univ Alberta, Div Cardiol, Heart & Stroke Chair Cardiovasc Res, Dept Med Cardiol, Edmonton, AB T6G 2B7, Canada
[2] Univ Alberta, Vasc Biol Grp, Edmonton, AB T6G 2M7, Canada
关键词
immunoelectropharmacology; laser capture microdissection; voltage-gated channels; pulmonary circulation; adenoviral gene transfer;
D O I
10.1161/01.RES.0000137173.42723.fb
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Hypoxic pulmonary vasoconstriction (HPV) is initiated by inhibition of O-2-sensitive, voltage-gated (Kv) channels in pulmonary arterial smooth muscle cells (PASMCs). Kv inhibition depolarizes membrane potential ( EM), thereby activating Ca2+ influx via voltage-gated Ca2+ channels. HPV is weak in extrapulmonary, conduit pulmonary arteries (PA) and strong in precapillary resistance arteries. We hypothesized that regional heterogeneity in HPV reflects a longitudinal gradient in the function/expression of PASMC O-2-sensitive Kv channels. In adult male Sprague Dawley rats, constrictions to hypoxia, the Kv blocker 4-aminopyridine (4-AP), and correolide, a Kv1.x channel inhibitor, were endothelium-independent and greater in resistance versus conduit PAs. Moreover, HPV was dependent on Kv-inhibition, being completely inhibited by pretreatment with 4-AP. Kv1.2, 1.5, Kv2.1, Kv3.1b, Kv4.3, and Kv9.3. mRNA increased as arterial caliber decreased; however, only Kv1.5 protein expression was greater in resistance PAs. Resistance PASMCs had greater K+ current (I-K) and a more hyperpolarized E-M and were uniquely O-2(-) and correolide-sensitive. The O-2-sensitive current (active at -65 mV) was resistant to iberiotoxin, with minimal tityustoxin sensitivity. In resistance PASMCs, 4-AP and hypoxia inhibited I-K 57% and 49%, respectively, versus 34% for correolide. Intracellular administration of anti-Kv1.5 antibodies inhibited correolide's effects. The hypoxia-sensitive, correolide-insensitive I-K (15%) was conducted by Kv2.1. Anti-Kv1.5 and anti-Kv2.1 caused additive depolarization in resistance PASMCs (Kv1.5>Kv2.1) and inhibited hypoxic depolarization. Heterologously expressed human PASMC Kv1.5 generated an O-2(-) and correolide-sensitive I-K like that in resistance PASMCs. In conclusion, Kv1.5 and Kv2.1 account for virtually all the O-2-sensitive current. HPV occurs in a Kv-enriched resistance zone because resistance PASMCs preferentially express O-2-sensitive Kv-channels.
引用
收藏
页码:308 / 318
页数:11
相关论文
共 49 条
[1]   The mechanism(s) of hypoxic pulmonary vasoconstriction:: Potassium channels, redox O2 sensors, and controversies [J].
Archer, S ;
Michelakis, E .
NEWS IN PHYSIOLOGICAL SCIENCES, 2002, 17 :131-137
[2]   HYPOXIC PULMONARY VASOCONSTRICTION IS ENHANCED BY INHIBITION OF THE SYNTHESIS OF AN ENDOTHELIUM DERIVED RELAXING FACTOR [J].
ARCHER, SL ;
TOLINS, JP ;
RAIJ, L ;
WEIR, EK .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1989, 164 (03) :1198-1205
[3]   Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BKCa channels [J].
Archer, SL ;
Gragasin, FS ;
Wu, XC ;
Wang, SH ;
McMurtry, S ;
Kim, DH ;
Platonov, M ;
Koshal, A ;
Hashimoto, K ;
Campbell, WB ;
Falck, JR ;
Michelakis, ED .
CIRCULATION, 2003, 107 (05) :769-776
[4]   Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5 [J].
Archer, SL ;
London, B ;
Hampl, V ;
Wu, XC ;
Nsair, A ;
Puttagunta, L ;
Hashimoto, K ;
Waite, RE ;
Michelakis, ED .
FASEB JOURNAL, 2001, 15 (08) :1801-+
[5]   A REDOX-BASED O2 SENSOR IN RAT PULMONARY VASCULATURE [J].
ARCHER, SL ;
HUANG, J ;
HENRY, T ;
PETERSON, D ;
WEIR, EK .
CIRCULATION RESEARCH, 1993, 73 (06) :1100-1112
[6]   Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes [J].
Archer, SL ;
Souil, E ;
Dinh-Xuan, AT ;
Schremmer, B ;
Mercier, JC ;
El Yaagoubi, A ;
Nguyen-Huu, L ;
Reeve, HL ;
Hampl, V .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (11) :2319-2330
[7]   Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia [J].
Archer, SL ;
Huang, JMC ;
Reeve, HL ;
Hampl, V ;
Tolarova, S ;
Michelakis, E ;
Weir, EK .
CIRCULATION RESEARCH, 1996, 78 (03) :431-442
[8]   FREE-SURFACE VELOCITY-MEASUREMENT OF SHOCK-COMPRESSED ALUMINA POWDER COMPACT USING A FABRY-PEROT-INTERFEROMETER [J].
TANIGUCHI, T ;
YASUO, H ;
KONDO, K ;
SAWAOKA, AB .
JOURNAL OF APPLIED PHYSICS, 1989, 66 (04) :1662-1666
[9]   BIPHASIC CONTRACTILE RESPONSE OF PULMONARY-ARTERY TO HYPOXIA [J].
BENNIE, RE ;
PACKER, CS ;
POWELL, DR ;
JIN, N ;
RHOADES, RA .
AMERICAN JOURNAL OF PHYSIOLOGY, 1991, 261 (02) :L156-L163
[10]   In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes [J].
Brahmajothi, MV ;
Morales, MJ ;
Liu, SG ;
Rasmusson, RL ;
Campbell, DL ;
Strauss, HC .
CIRCULATION RESEARCH, 1996, 78 (06) :1083-1089