Global well-posedness of axisymmetric solution to the 3D axisymmetric chemotaxis-Navier-Stokes equations with logistic source

被引:10
作者
Zhang, Qian [1 ]
Zheng, Xiaoxin [2 ,3 ]
机构
[1] Hebei Univ, Sch Math & Informat Sci, Hebei Key Lab Machine Learning & Computat Intelli, Baoding 071002, Peoples R China
[2] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[3] Minist Educ, Key Lab Math Informat Behav Semant, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Global existence; Axisymmetric solution; Chemotaxis; Navier-Stokes equations; NONLINEAR DIFFUSION; WEAK SOLUTIONS; FLUID MODEL; BLOW-UP; SYSTEM; EXISTENCE; BOUNDEDNESS;
D O I
10.1016/j.jde.2020.10.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate Cauchy problem of the 3D incompressible chemotaxis-Navier-Stokes equations with logistic source. By exploring some new a priori estimates and making good use of the geometry structure of axisymmetric flow without swirl, we prove the global-in-time well-posedness for the axisymmetric chemotaxis-Navier-Stokes equations. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:576 / 612
页数:37
相关论文
共 35 条
[21]   GLOBAL EXISTENCE AND BOUNDEDNESS IN A KELLER-SEGEL-STOKES MODEL WITH ARBITRARY POROUS MEDIUM DIFFUSION [J].
Tao, Youshan ;
Winkler, Michael .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (05) :1901-1914
[22]   Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity [J].
Tao, Youshan ;
Winkler, Michael .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) :692-715
[23]   A CHEMOTAXIS-HAPTOTAXIS MODEL: THE ROLES OF NONLINEAR DIFFUSION AND LOGISTIC SOURCE [J].
Tao, Youshan ;
Winkler, Michael .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) :685-704
[24]   A chemotaxis system with logistic source [J].
Tello, J. Ignacio ;
Winkler, Michael .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (06) :849-877
[25]   Bacterial swimming and oxygen transport near contact lines [J].
Tuval, I ;
Cisneros, L ;
Dombrowski, C ;
Wolgemuth, CW ;
Kessler, J ;
Goldstein, RE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (07) :2277-2282
[26]   Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system [J].
Winkler, Michael .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05) :1329-1352
[27]   HOW FAR DO CHEMOTAXIS-DRIVEN FORCES INFLUENCE REGULARITY IN THE NAVIER-STOKES SYSTEM? [J].
Winkler, Michael .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (05) :3067-3125
[28]   Stabilization in a two-dimensional chemotaxis-Navier-Stokes system [J].
Winkler, Michael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 211 (02) :455-487
[29]   Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system [J].
Winkler, Michael .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (05) :748-767
[30]   Global Large-Data Solutions in a Chemotaxis-(Navier-)Stokes System Modeling Cellular Swimming in Fluid Drops [J].
Winkler, Michael .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (02) :319-351