Gravitational-wave parameter estimation with autoregressive neural network flows

被引:95
|
作者
Green, Stephen R. [1 ]
Simpson, Christine [2 ]
Gair, Jonathan [1 ]
机构
[1] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Am Muhlenberg 1, D-14476 Potsdam, Germany
[2] Univ Edinburgh, Sch Informat, 10 Crichton St, Edinburgh EH8 9AB, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevD.102.104057
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce the use of autoregressive normalizing flows for rapid likelihood-free inference of binary black hole system parameters from gravitational-wave data with deep neural networks. A normalizing flow is an invertible mapping on a sample space that can be used to induce a transformation from a simple probability distribution to a more complex one: if the simple distribution can be rapidly sampled and its density evaluated, then so can the complex distribution. Our first application to gravitational waves uses an autoregressive flow, conditioned on detector strain data, to map a multivariate standard normal distribution into the posterior distribution over system parameters. We train the model on artificial strain data using a model for the gravitational-wave signal that includes inspiral, merger and ringdown and draw waveforms from a five-parameter (m(1), m(2), phi(0), t(c), d(L)) prior and stationary Gaussian noise realizations with a fixed power spectral density. This gives performance comparable to current best deep-learning approaches to gravitational-wave parameter estimation. We then build a more powerful latent variable model by incorporating autoregressive flows within the variational autoencoder framework. This model has performance comparable to Markov chain Monte Carlo and, in particular, successfully models the multimodal phi(0) posterior. Finally, we train the autoregressive latent variable model on an expanded parameter space, including also aligned spins (chi(1z), chi(2z)) and binary inclination theta(JN), and show that all parameters and degeneracies and most uncertainties are well-recovered. In all cases, sampling is extremely fast, requiring less than two seconds to draw 10(4) posterior samples.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Stealth bias in gravitational-wave parameter estimation
    Vallisneri, Michele
    Yunes, Nicolas
    PHYSICAL REVIEW D, 2013, 87 (10):
  • [2] Issues of mismodeling gravitational-wave data for parameter estimation
    Edy, Oliver
    Lundgren, Andrew
    Nuttall, Laura K.
    PHYSICAL REVIEW D, 2021, 103 (12)
  • [3] On the Use of Galaxy Catalogs in Gravitational-wave Parameter Estimation
    Mo, Geoffrey
    Haster, Carl-Johan
    Katsavounidis, Erik
    ASTROPHYSICAL JOURNAL, 2025, 979 (02):
  • [4] ASTROPHYSICAL PRIOR INFORMATION AND GRAVITATIONAL-WAVE PARAMETER ESTIMATION
    Pankow, Chris
    Sampson, Laura
    Perri, Leah
    Chase, Eve
    Coughlin, Scott
    Zevin, Michael
    Kalogera, Vassiliki
    ASTROPHYSICAL JOURNAL, 2017, 834 (02):
  • [5] Fast Gravitational-wave Parameter Estimation without Compromises
    Wong, Kaze W. K.
    Isi, Maximiliano
    Edwards, Thomas D. P.
    ASTROPHYSICAL JOURNAL, 2023, 958 (02):
  • [6] Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline
    Becsy, Bence
    Raffai, Peter
    Cornish, Neil J.
    Essick, Reed
    Kanner, Jonah
    Katsavounidis, Erik
    Littenberg, Tyson B.
    Millhouse, Margaret
    Vitale, Salvatore
    ASTROPHYSICAL JOURNAL, 2017, 839 (01):
  • [7] Parameter Estimation in Searches for the Stochastic Gravitational-Wave Background
    Mandic, V.
    Thrane, E.
    Giampanis, S.
    Regimbau, T.
    PHYSICAL REVIEW LETTERS, 2012, 109 (17)
  • [8] Bayesian parameter estimation for targeted anisotropic gravitational-wave background
    Tsukada, Leo
    Jaraba, Santiago
    Agarwal, Deepali
    Floden, Erik
    PHYSICAL REVIEW D, 2023, 107 (02)
  • [9] Multiband gravitational-wave parameter estimation: A study of future detectors
    Grimm, Stefan
    Harms, Jan
    PHYSICAL REVIEW D, 2020, 102 (02)
  • [10] Inadequacies of the Fisher information matrix in gravitational-wave parameter estimation
    Rodriguez, Carl L.
    Farr, Benjamin
    Farr, Will M.
    Mandel, Ilya
    PHYSICAL REVIEW D, 2013, 88 (08):