LP bounds for Marcinkiewicz integrals associated to surfaces of revolution

被引:32
作者
Wu, Huoxiong [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Marcinkiewicz integral; surface of revolution; Littlewood-Paley theory; rough kernel;
D O I
10.1016/j.jmaa.2005.08.087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the LP-boundedness of some Marcinkiewicz integral operators along surfaces of revolution. Some size conditions implying the L-P(Rn+1) boundedness of these operators for some fixed 1 < p < infinity are obtained. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:811 / 827
页数:17
相关论文
共 14 条
[1]   Multidimensional van der Corput and sublevel set estimates [J].
Carbery, A ;
Christ, M ;
Wright, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :981-1015
[2]   LP bounds for singular integrals associated to surfaces of revolution [J].
Cheng, LC ;
Pan, YB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (01) :163-169
[3]   Lp bounds for Marcinkiewicz integrals [J].
Ding, Y ;
Pan, YB .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 :669-677
[4]   On the Lp boundedness of Marcinkiewicz integrals [J].
Ding, Y ;
Fan, DS ;
Pan, YB .
MICHIGAN MATHEMATICAL JOURNAL, 2002, 50 (01) :17-26
[5]   MAXIMAL AND SINGULAR INTEGRAL-OPERATORS VIA FOURIER-TRANSFORM ESTIMATES [J].
DUOANDIKOETXEA, J ;
DEFRANCIA, JLR .
INVENTIONES MATHEMATICAE, 1986, 84 (03) :541-561
[6]   Remarks on Littlewood-Paley functions and singular integrals [J].
Fan, D ;
Sato, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (03) :565-585
[7]  
Grafakos L, 1998, INDIANA U MATH J, V47, P455
[8]   LP(Rm x Rn) boundedness for the Marcinkiewicz integral on product spaces [J].
Hu, GE ;
Lu, SZ ;
Yan, DY .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (01) :75-82
[9]   Singular integrals and maximal functions associated to surfaces of revolution [J].
Kim, WJ ;
Wainger, S ;
Wright, J ;
Ziesler, S .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 :291-296
[10]   Rough singular integrals associated to surfaces of revolution [J].
Lu, SZ ;
Pan, YB ;
Yang, DC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (10) :2931-2940