Implications of the NEAR mission for internal structure of Mathilde and Eros

被引:16
作者
Cheng, AF [1 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
来源
IMPACT OF MINOR BODIES OF OUR SOLAR SYSTEM ON PLANETS AND THEIR MIDDLE AND UPPER ATMOSPHERE | 2004年 / 33卷 / 09期
关键词
asteroids; surfaces; interior structure; NEAR mission;
D O I
10.1016/S0273-1177(03)00452-6
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Near Earth Asteroid Rendezvous (NEAR) performed a flyby of the C-type main belt asteroid 253 Mathilde and an orbital study of the S-type near-Earth asteroid 433 Eros. These asteroid datasets provide a basis for inferences regarding physical properties and internal structure. The NEAR flyby of Mathilde revealed a heavily cratered surface with at least five giant craters (close to geometric saturation). Mathilde's density was unexpectedly low at 1.3 +/- 0.3 g cm(-3), indicating a high porosity. Such a high porosity may be consistent with a rubble pile structure and may favor a compressional style of cratering. There are structural features, such as a 20-km long scarp, and polygonal craters indicating that Mathilde is not completely strengthless. At least one of its structural components appears coherent over a few tens of km. NEARs study of Eros found an average density of 2.67 +/- 0.03 g cm(-3), almost uniform within the asteroid. Several lines of evidence suggest a globally consolidated internal structure: topographic features indicating tectonic deformations, regional scale linear features with related orientations, and structural control of craters in an intermediate size range. Eros is interpreted to be extensively fractured, but it was not disrupted and reaccumulated gravitationally. Some constraints can be placed on its strength. The consolidated interior must support a shear stress at least on the order of a few bars. Crater morphologies can be interpreted as suggesting a 'strength' near the surface of a few tens of kPa. Macroscopic fractures within Eros should be filled with fines, so the low average density of Eros relative to ordinary chondrites is not simply explained by macroscopic void space. Published by Elsevier Ltd on behalf of COSPAR.
引用
收藏
页码:1558 / 1563
页数:6
相关论文
共 30 条
[1]   Modeling the structure of high porosity asteroids [J].
Britt, DT ;
Consolmagno, GJ .
ICARUS, 2001, 152 (01) :134-139
[2]  
CHAPMAN CR, 2002, ASTEROIDS, V3, P315, DOI DOI 10.1006/ICAR.1996.0048
[3]  
Cheng A., 2002, Asteroids, VIII, P351, DOI DOI 10.2514/6.1993-4089
[4]   Ponded deposits on asteroid 433 Eros [J].
Cheng, AF ;
Izenberg, N ;
Chapman, CR ;
Zuber, MT .
METEORITICS & PLANETARY SCIENCE, 2002, 37 (08) :1095-1105
[5]   Laser altimetry of small-scale features on 433 Eros from NEAR-Shoemaker [J].
Cheng, AF ;
Barnouin-Jha, O ;
Zuber, MT ;
Veverka, J ;
Smith, DE ;
Neumann, GA ;
Robinson, M ;
Thomas, P ;
Garvin, JB ;
Murchie, S ;
Chapman, C ;
Prockter, L .
SCIENCE, 2001, 292 (5516) :488-491
[6]   Giant craters on Mathilde [J].
Cheng, AF ;
Barnouin-Jha, OS .
ICARUS, 1999, 140 (01) :34-48
[7]   NEAR infrared spectrometer photometry of asteroid 433 Eros [J].
Clark, BE ;
Helfenstein, P ;
Bell, JF ;
Peterson, C ;
Veverka, J ;
Izenberg, NI ;
Domingue, D ;
Wellnitz, D ;
McFadden, L .
ICARUS, 2002, 155 (01) :189-204
[8]   Elemental composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on 433 Eros [J].
Evans, LG ;
Starr, RD ;
Brückner, J ;
Reedy, RC ;
Boynton, WV ;
Trombka, JI ;
Goldstein, JO ;
Masarik, J ;
Nittler, LR ;
McCoy, TJ .
METEORITICS & PLANETARY SCIENCE, 2001, 36 (12) :1639-1660
[9]   Compaction as the origin of the unusual craters on the asteroid Mathilde [J].
Housen, KR ;
Holsapple, KA ;
Voss, ME .
NATURE, 1999, 402 (6758) :155-157
[10]   The composition of 433 Eros: A mineralogical-chemical synthesis [J].
McCoy, TJ ;
Burbine, TH ;
McFadden, LA ;
Starr, RD ;
Gaffey, MJ ;
Nittler, LR ;
Evans, LG ;
Izenberg, N ;
Lucey, PG ;
Trombka, JI ;
Bell, JF ;
Clark, BE ;
Clark, PE ;
Squyres, SW ;
Chapman, CR ;
Boynton, WV ;
Veverka, J .
METEORITICS & PLANETARY SCIENCE, 2001, 36 (12) :1661-1672