Anisotropic thermal lattice Boltzmann simulation of 2D natural convection in a square cavity

被引:26
作者
Dubois, Francois [1 ,2 ]
Lin, Chao-An [3 ]
Tekitek, Mohamed Mahdi [3 ,4 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
[2] Conservatoire Natl Arts & Metiers, LMSSC, Paris, France
[3] Natl Tsing Hua Univ, Dept Power Mech Engn, Hsinchu 30013, Taiwan
[4] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, El Manar 2092, Tunisia
关键词
Thermal lattice Boltzmann model; Multiple relaxation time model; Double population; Natural convection; Square cavity; MODEL; DISPERSION; FLOWS;
D O I
10.1016/j.compfluid.2015.10.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Natural convection in a square cavity is simulated by multiple relaxation time (MRT) lattice Boltzmann method (LBM) with a separate distribution function to solve for the temperature distribution. The Rayleigh numbers examined range from Ra = 10(3) to Ra = 10(6). The simulations are performed for anisotropic thermal case and compared to isotropic thermal case. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:278 / 287
页数:10
相关论文
共 39 条
[1]   LATTICE BOLTZMANN THERMOHYDRODYNAMICS [J].
ALEXANDER, FJ ;
CHEN, S ;
STERLING, JD .
PHYSICAL REVIEW E, 1993, 47 (04) :R2249-R2252
[2]   Analysis of the pressure fluctuations from an LBM simulation of turbulent channel flow [J].
Bespalko, D. ;
Pollard, A. ;
Uddin, M. .
COMPUTERS & FLUIDS, 2012, 54 :143-146
[3]   Lattice-Boltzmann simulations of the thermally driven 2D square cavity at high Rayleigh numbers [J].
Contrino, Dario ;
Lallemand, Pierre ;
Asinari, Pietro ;
Luo, Li-Shi .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 275 :257-272
[4]  
DAVIS GD, 1983, INT J NUMER METH FL, V3, P249
[5]   Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method [J].
Dixit, HN ;
Babu, V .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (3-4) :727-739
[6]  
Dubois F, 2014, LECT NOTES COMPUTATI, V99, P89
[7]  
Dubois F, 2008, FINITE VOLUMES COMPL, V795
[8]   Equivalent partial differential equations of a lattice Boltzmann scheme [J].
Dubois, Francois .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (07) :1441-1449
[9]   On a superconvergent lattice Boltzmann boundary scheme [J].
Dubois, Francois ;
Lallemand, Pierre ;
Tekitek, Mandi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (07) :2141-2149
[10]   Towards higher order lattice Boltzmann schemes [J].
Dubois, Francois ;
Lallemand, Pierre .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,