Reconstruction of sub-wavelength features and nano-positioning of gratings using coherent Fourier scatterometry

被引:49
作者
Kumar, Nitish [1 ]
Petrik, Peter [1 ,2 ]
Ramanandan, Gopika K. P. [1 ]
El Gawhary, Omar [1 ,3 ]
Roy, Sarathi [1 ]
Pereira, Silvania F. [1 ]
Coene, Wim M. J. [4 ]
Urbach, H. Paul [1 ]
机构
[1] Delft Univ Technol, Fac Sci Appl, Dept Imaging Phys, Opt Res Grp, NL-2628 CH Delft, Netherlands
[2] Hungarian Acad Sci, Inst Tech Phys & Mat Sci, Res Ctr Nat Sci, H-1121 Budapest, Hungary
[3] VSL Dutch Metrol Inst, NL-2600 AR Delft, Netherlands
[4] ASML Netherlands BV, NL-5504 DR Veldhoven, Netherlands
关键词
COUPLED-WAVE ANALYSIS; METROLOGY;
D O I
10.1364/OE.22.024678
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical scatterometry is the state of art optical inspection technique for quality control in lithographic process. As such, any boost in its performance carries very relevant potential in semiconductor industry. Recently we have shown that coherent Fourier scatterometry (CFS) can lead to a notably improved sensitivity in the reconstruction of the geometry of printed gratings. In this work, we report on implementation of a CFS instrument, which confirms the predicted performances. The system, although currently operating at a relatively low numerical aperture (NA = 0.4) and long wavelength (633 nm) allows already the reconstruction of the grating parameters with nanometer accuracy, which is comparable to that of AFM and SEM measurements on the same sample, used as reference measurements. Additionally, 1 nm accuracy in lateral positioning has been demonstrated, corresponding to 0.08% of the pitch of the grating used in the actual experiment. (C) 2014 Optical Society of America
引用
收藏
页码:24678 / 24688
页数:11
相关论文
共 31 条
[21]   Scatterometry for in situ measurement of pattern reflow in nanoimprinted polymers [J].
Patrick, Heather J. ;
Germer, Thomas A. ;
Ding, Yifu ;
Ro, Hyun Wook ;
Richter, Lee J. ;
Soles, Christopher L. .
APPLIED PHYSICS LETTERS, 2008, 93 (23)
[22]   Solving the inverse grating problem by white light interference Fourier scatterometry [J].
Paz, Valeriano Ferreras ;
Peterhaensel, Sandy ;
Frenner, Karsten ;
Osten, Wolfgang .
LIGHT-SCIENCE & APPLICATIONS, 2012, 1 :e36-e36
[23]  
Press W. H., 2002, NUMERICAL RECIPES C
[24]  
Raymond C, 2005, AIP CONF PROC, V788, P394, DOI 10.1063/1.2062993
[25]   Method for optical inspection of nanoscale objects based upon analysis of their defocused images and features of its practical implementation [J].
Ryabko, M. V. ;
Koptyaev, S. N. ;
Shcherbakov, A. V. ;
Lantsov, A. D. ;
Oh, S. Y. .
OPTICS EXPRESS, 2013, 21 (21) :24483-24489
[26]   Angle resolved optical metrology [J].
Silver, R. M. ;
Barnes, B. M. ;
Heckert, A. ;
Attota, R. ;
Dixson, R. ;
Jun, J. .
METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXII, PTS 1 AND 2, 2008, 6922 (1-2)
[27]   Imaging scatterometry of butterfly wing scales [J].
Stavenga, D. G. ;
Leertouwer, H. L. ;
Pirih, P. ;
Wehling, M. F. .
OPTICS EXPRESS, 2009, 17 (01) :193-202
[28]   A SURVEY OF NON-LINEAR OPTIMIZATION TECHNIQUES [J].
SWANN, WH .
FEBS LETTERS, 1969, S 2 :S39-&
[29]   Technology and metrology of new electronic materials and devices [J].
Vogel, Eric M. .
NATURE NANOTECHNOLOGY, 2007, 2 (01) :25-32
[30]   A new flexible scatterometer for critical dimension metrology [J].
Wurm, Matthias ;
Pilarski, Frank ;
Bodermann, Bernd .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (02)