One-pot route for uniform anchoring of TiO2 nanoparticles on reduced graphene oxides and their anode performance for lithium-ion batteries

被引:25
作者
Yoon, Dohyeon [1 ]
Hwang, Jieun [1 ]
Kim, Dong Hyun [2 ]
Chang, Wonyoung [2 ]
Chung, Kyung Yoon [2 ]
Kim, Jaehoon [1 ,3 ]
机构
[1] Sungkyunkwan Univ, Sch Mech Engn, 2066 Seobu Ro, Suwon 16419, Gyeong Gi Do, South Korea
[2] Korea Inst Sci & Technol, Ctr Energy Convergence, Hwarangno 14 Gil 5, Seoul 02792, South Korea
[3] Sungkyunkwan Univ, SICKU Adv Inst Nano Technol SAINT, 2066 Seobu Ro, Suwon 16419, Gyeong Gi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Reduced graphene oxide; TiO2; Supercritical alcohol; Lithium secondary batteries; Anode materials; SUPERCRITICAL ALCOHOLS; MESOPOROUS ANATASE; CATALYTIC COMBUSTION; ELECTRODE MATERIALS; DIESEL SOOT; LI; INTERCALATION; NANOSHEETS; COMPOSITE; INSERTION;
D O I
10.1016/j.supflu.2017.02.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
TiO2-reduced graphene oxide (RGO) hybrids were prepared using one-pot, simultaneous reduction of graphene oxide (GO) to RGO and anchoring of TiO2 nanoparticles on the surface of RGO in supercritical isopropanol. Numerous anchor sites facilitating heterogeneous nucleation of TiO2 particles on GO, and extremely fast nucleation due to the supercritical alcohol led ultrafine, well-dispersed anatase TiO2 nanoparticles to anchor to the RGO sheets in a single step. The unique synthetic approach developed herein was very effective for preventing restacking of graphene sheets during reduction, and for tightly anchoring TiO2 nanoparticles to the RGO surface. When the TiO2-RGO with a TiO2 loading of 48 wt% tested as an anode in lithium-ion battery, it exhibited excellent electrochemical performance with a high reversible capacity of 229 mAh g(-1) at 50 mAg(-1) after 50 cycles and a high-rate performance of 115 mAh g(-1) at 1 A g(-1), and 95% of the initial capacity was retained even after 1000 cycles (at rate of 1 A g(-1)). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:66 / 78
页数:13
相关论文
共 50 条
[21]   Synthesis and superior anode performance of TiO2@reduced graphene oxide nanocomposites for lithium ion batteries [J].
Cao, Huaqiang ;
Li, Baojun ;
Zhang, Jingxian ;
Lian, Fang ;
Kong, Xianghua ;
Qu, Meizhen .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (19) :9759-9766
[22]   Assembling porous carbon-coated TiO2(B)/anatase nanosheets on reduced graphene oxide for high performance lithium-ion batteries [J].
Jiang, Shang ;
Wang, Runwei ;
Pang, Mingjun ;
Wang, Hongbin ;
Zeng, Shangjing ;
Yue, Xinzheng ;
Ni, Ling ;
Yu, Yanru ;
Dai, Jinyu ;
Qiu, Shilun ;
Zhang, Zongtao .
ELECTROCHIMICA ACTA, 2015, 182 :406-415
[23]   TiO2/NiO/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries [J].
Chen, Zehua ;
Gao, Yu ;
Zhang, Qixiang ;
Li, Liangliang ;
Ma, Pengcheng ;
Xing, Baolin ;
Cao, Jianliang ;
Sun, Guang ;
Bala, Hari ;
Zhang, Chuanxiang ;
Zhang, Zhanying ;
Zeng, Yanyang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 774 :873-878
[24]   The Influence of TiO2 Nanoparticles Morphologies on the Performance of Lithium-Ion Batteries [J].
Luo, Wenpo ;
Blanchard, Juliette ;
Xue, Yanpeng ;
Taleb, Abdelhafed .
NANOMATERIALS, 2023, 13 (19)
[25]   Hollow Nanobarrels of α-Fe2O3 on Reduced Graphene Oxide as High Performance Anode for Lithium-Ion Batteries [J].
Lee, Kang Soo ;
Park, Seyong ;
Lee, Wooyoung ;
Yoon, Young Soo .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (03) :2027-2034
[26]   TiO2/graphene nanocomposites as anode materials for high rate lithium-ion batteries [J].
Yi-ping Tang ;
Shi-ming Wang ;
Xiao-xu Tan ;
Guang-ya Hou ;
Guo-qu Zheng .
Journal of Central South University, 2014, 21 :1714-1718
[27]   Electrochemical properties of rutile TiO2 nanorods as anode material for lithium-ion batteries [J].
Qiao, Hui ;
Luo, Qiaohui ;
Wei, Qufu ;
Cai, Yibing ;
Huang, Fenglin .
IONICS, 2012, 18 (07) :667-672
[28]   Nitrogen Rich Carbon Coated TiO2 Nanoparticles as Anode for High Performance Lithium-ion Battery [J].
Senthil, Chenrayan ;
Kesavan, Thangaian ;
Bhaumik, Asim ;
Yoshio, Masaki ;
Sasidharan, Manickam .
ELECTROCHIMICA ACTA, 2017, 255 :417-427
[29]   Preparation of carbon-coated TiO2 nanostructures for lithium-ion batteries [J].
Park, Sang-Jun ;
Kim, Hansu ;
Kim, Young-Jun ;
Lee, Hyukjae .
ELECTROCHIMICA ACTA, 2011, 56 (15) :5355-5362
[30]   Anatase TiO2 nanoparticles for lithium-ion batteries [J].
El-Deen, S. S. ;
Hashem, A. M. ;
Ghany, A. E. Abdel ;
Indris, S. ;
Ehrenberg, H. ;
Mauger, A. ;
Julien, C. M. .
IONICS, 2018, 24 (10) :2925-2934