Error estimates for multilevel approximation using polyharmonic splines

被引:14
作者
Hales, SJ [1 ]
Levesley, J [1 ]
机构
[1] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
multilevel approximation; polyharmonic splines; convergence;
D O I
10.1023/A:1015674607196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Polyharmonic splines are used to interpolate data in a stationary multilevel iterative refinement scheme. By using such functions the necessary tools are provided to obtain simple pointwise error bounds on the approximation. Linear convergence between levels is shown for regular data on a scaled multiinteger grid, and a multilevel domain decomposition method.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1997, RECONSTRUCTION MULTI
[2]   CONSTRUCTION OF 3-DIMENSIONAL BLACK-HOLE INITIAL DATA VIA MULTIQUADRICS [J].
DUBAL, MR .
PHYSICAL REVIEW D, 1992, 45 (04) :1178-1187
[3]   Multistep scattered data interpolation using compactly supported radial basis functions [J].
Floater, MS ;
Iske, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 73 (1-2) :65-78
[4]  
HAGAN RE, 1994, J APPL SCI COMPUT, V1, P266
[5]  
HALES SJ, 2000, CURV SURF FITT SAINT
[6]  
Kansa E. J., 1995, COMPUT FLUID DYN J, V3, P479
[7]   Direct form seminorms arising in the theory of interpolation by translates of a basis function [J].
Levesley, J ;
Light, W .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (2-3) :161-182
[8]   Spaces of distributions, interpolation by translates of a basis function and error estimates [J].
Light, W ;
Wayne, H .
NUMERISCHE MATHEMATIK, 1999, 81 (03) :415-450
[9]  
Madych W.R., 1988, Approx. Theory Appl, V4, P77, DOI [10.1090/S0025-5718-1990-0993931-7, DOI 10.1090/S0025-5718-1990-0993931-7]
[10]  
Narcowich FJ, 1999, APPL COMPUT HARMON A, V7, P243, DOI 10.1006/acha.1998.0269