Design and optimization of Ag-dielectric core-shell nanostructures for silicon solar cells

被引:6
作者
Chen, Feng-Xiang [1 ,2 ]
Wang, Xi-Cheng [3 ]
Xia, Dong-Lin [1 ]
Wang, Li-Sheng [2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Dept Phys Sci & Technol, Wuhan 430070, Peoples R China
[3] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
关键词
NANOPARTICLES; AG-AT-TIO2; TIO2; AU-AT-TIO2; DEPOSITION; EFFICIENCY;
D O I
10.1063/1.4930957
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Metal-dielectric core-shell nanostructures have been proposed as a light trapping scheme for enhancing the optical absorption of silicon solar cells. As a potential application of such enhanced effects, the scattering efficiencies of three core-shell structures (Ag@SiO2, Ag@TiO2, and Ag@ZrO2) are discussed using the Mie Scattering theory. For compatibility with experiment results, the core diameter and shell thickness are limited to 100 and 30 nm, respectively, and a weighted scattering efficiency is introduced to evaluate the scattering abilities of different nanoparticles under the solar spectrum AM 1.5. The simulated results indicate that the shell material and thickness are two key parameters affecting the weighted scattering efficiency. The SiO2 is found to be an unsuitable shell medium because of its low refractive index. However, using the high refractive index mediumTiO(2) in Ag@TiO2 nanoparticles, only the thicker shell (30 nm) is more beneficial for light scattering. The ZrO2 is an intermediate refractive index material, so Ag@ZrO2 nanoparticles are the most effective core-shell nanostructures in these silicon solar cells applications. (C) 2015 Author(s).
引用
收藏
页数:6
相关论文
共 28 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[2]   Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures [J].
Bi, Dongqin ;
Moon, Soo-Jin ;
Haggman, Leif ;
Boschloo, Gerrit ;
Yang, Lei ;
Johansson, Erik M. J. ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael ;
Hagfeldt, Anders .
RSC ADVANCES, 2013, 3 (41) :18762-18766
[3]  
Bohren C. F., 2008, Absorption and Scattering of Light by Small Particles
[4]   Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles [J].
Brown, Michael D. ;
Suteewong, Teeraporn ;
Kumar, R. Sai Santosh ;
D'Innocenzo, Valerio ;
Petrozza, Annamaria ;
Lee, Michael M. ;
Wiesner, Ulrich ;
Snaith, Henry J. .
NANO LETTERS, 2011, 11 (02) :438-445
[5]   Enhanced light trapping in thin film solar cells by Ag/Al2O3 core- shell nanoparticles [J].
Chen, Feng-Xiang ;
Wang, Li-Sheng ;
Wang, Bao-Zhu .
MODERN PHYSICS LETTERS B, 2014, 28 (05)
[6]   Facile synthesis of Au@TiO2 core-shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency [J].
Du, Jiang ;
Qi, Jian ;
Wang, Dan ;
Tang, Zhiyong .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :6914-6918
[7]  
Edwards D.F., 1985, Handbook of optical constants of solids
[8]   QUANTUM SIZE EFFECTS IN METAL PARTICLES [J].
HALPERIN, WP .
REVIEWS OF MODERN PHYSICS, 1986, 58 (03) :533-606
[9]   Theoretical investigation of anti-reflection properties of Ag-nanoparticles [J].
Han Tao ;
Meng Fan-Ying ;
Zhang Song ;
Wang Jian-Qiang ;
Cheng Xue-Mei .
ACTA PHYSICA SINICA, 2011, 60 (02)
[10]   Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation [J].
Hirakawa, T ;
Kamat, PV .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (11) :3928-3934